The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. ex. Some numerals are expressed as "XNUMX".
Copyrights notice
The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. Copyrights notice
Dalam makalah ini kami memberikan algoritma mudah untuk mengira kod kanonik untuk graf fullerene. Algoritma kami berjalan masuk O(n) masa, manakala algoritma yang paling terkenal berjalan masuk O(n2) masa. Algoritma kami adalah mudah. Seseorang boleh menyamaratakan algoritma untuk mengira kod kanonik untuk rangka polihedron cembung dengan n bucu. Algoritma berjalan masuk O(n2) masa.
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Salinan
Naoki SHIMOTSUMA, Shin-ichi NAKANO, "A Simple Canonical Code for Fullerene Graphs" in IEICE TRANSACTIONS on Fundamentals,
vol. E92-A, no. 12, pp. 3398-3400, December 2009, doi: 10.1587/transfun.E92.A.3398.
Abstract: In this paper we give a simple algorithm to compute a canonical code for fullerene graphs. Our algorithm runs in O(n) time, while the best known algorithm runs in O(n2) time. Our algorithm is simple. One can generalize the algorithm to compute a canonical code for the skeleton of a convex polyhedron with n vertices. The algorithm runs in O(n2) time.
URL: https://global.ieice.org/en_transactions/fundamentals/10.1587/transfun.E92.A.3398/_p
Salinan
@ARTICLE{e92-a_12_3398,
author={Naoki SHIMOTSUMA, Shin-ichi NAKANO, },
journal={IEICE TRANSACTIONS on Fundamentals},
title={A Simple Canonical Code for Fullerene Graphs},
year={2009},
volume={E92-A},
number={12},
pages={3398-3400},
abstract={In this paper we give a simple algorithm to compute a canonical code for fullerene graphs. Our algorithm runs in O(n) time, while the best known algorithm runs in O(n2) time. Our algorithm is simple. One can generalize the algorithm to compute a canonical code for the skeleton of a convex polyhedron with n vertices. The algorithm runs in O(n2) time.},
keywords={},
doi={10.1587/transfun.E92.A.3398},
ISSN={1745-1337},
month={December},}
Salinan
TY - JOUR
TI - A Simple Canonical Code for Fullerene Graphs
T2 - IEICE TRANSACTIONS on Fundamentals
SP - 3398
EP - 3400
AU - Naoki SHIMOTSUMA
AU - Shin-ichi NAKANO
PY - 2009
DO - 10.1587/transfun.E92.A.3398
JO - IEICE TRANSACTIONS on Fundamentals
SN - 1745-1337
VL - E92-A
IS - 12
JA - IEICE TRANSACTIONS on Fundamentals
Y1 - December 2009
AB - In this paper we give a simple algorithm to compute a canonical code for fullerene graphs. Our algorithm runs in O(n) time, while the best known algorithm runs in O(n2) time. Our algorithm is simple. One can generalize the algorithm to compute a canonical code for the skeleton of a convex polyhedron with n vertices. The algorithm runs in O(n2) time.
ER -