The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. ex. Some numerals are expressed as "XNUMX".
Copyrights notice
The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. Copyrights notice
Reka bentuk penjana nadi kuasa rendah menggunakan realisasi logik hibrid bagi get NAND 3-input dibentangkan. Pendekatan logik hibrid berjaya memendekkan laluan kritikal di sepanjang timbunan transistor nyahcas dan dengan itu mengurangkan penggunaan kuasa litar pintas semasa penjanaan nadi. Gabungan transistor pas dan gaya logik CMOS penuh dalam satu reka bentuk get NAND juga membantu meminimumkan saiz transistor yang diperlukan, yang mengurangkan kapasiti pemuatan pokok jam juga. Hasil simulasi mendedahkan bahawa, berbanding dengan kerja terdahulu, reka bentuk kami boleh mencapai penjimatan 20.5% dan 23% masing-masing dalam kuasa dan kawasan litar.
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Salinan
Jin-Fa LIN, Yin-Tsung HWANG, Ming-Hwa SHEU, "Low Power Pulse Generator Design Using Hybrid Logic" in IEICE TRANSACTIONS on Fundamentals,
vol. E93-A, no. 6, pp. 1266-1268, June 2010, doi: 10.1587/transfun.E93.A.1266.
Abstract: A low power pulse generator design using hybrid logic realization of a 3-input NAND gate is presented. The hybrid logic approach successfully shortens the critical path along the discharging transistor stack and thus reduces the short circuit power consumption during the pulse generation. The combination of pass transistor and full CMOS logic styles in one NAND gate design also helps minimize the required transistor size, which alleviates the loading capacitance of clock tree as well. Simulation results reveal that, compared with prior work, our design can achieve 20.5% and 23% savings respectively in power and circuit area.
URL: https://global.ieice.org/en_transactions/fundamentals/10.1587/transfun.E93.A.1266/_p
Salinan
@ARTICLE{e93-a_6_1266,
author={Jin-Fa LIN, Yin-Tsung HWANG, Ming-Hwa SHEU, },
journal={IEICE TRANSACTIONS on Fundamentals},
title={Low Power Pulse Generator Design Using Hybrid Logic},
year={2010},
volume={E93-A},
number={6},
pages={1266-1268},
abstract={A low power pulse generator design using hybrid logic realization of a 3-input NAND gate is presented. The hybrid logic approach successfully shortens the critical path along the discharging transistor stack and thus reduces the short circuit power consumption during the pulse generation. The combination of pass transistor and full CMOS logic styles in one NAND gate design also helps minimize the required transistor size, which alleviates the loading capacitance of clock tree as well. Simulation results reveal that, compared with prior work, our design can achieve 20.5% and 23% savings respectively in power and circuit area.},
keywords={},
doi={10.1587/transfun.E93.A.1266},
ISSN={1745-1337},
month={June},}
Salinan
TY - JOUR
TI - Low Power Pulse Generator Design Using Hybrid Logic
T2 - IEICE TRANSACTIONS on Fundamentals
SP - 1266
EP - 1268
AU - Jin-Fa LIN
AU - Yin-Tsung HWANG
AU - Ming-Hwa SHEU
PY - 2010
DO - 10.1587/transfun.E93.A.1266
JO - IEICE TRANSACTIONS on Fundamentals
SN - 1745-1337
VL - E93-A
IS - 6
JA - IEICE TRANSACTIONS on Fundamentals
Y1 - June 2010
AB - A low power pulse generator design using hybrid logic realization of a 3-input NAND gate is presented. The hybrid logic approach successfully shortens the critical path along the discharging transistor stack and thus reduces the short circuit power consumption during the pulse generation. The combination of pass transistor and full CMOS logic styles in one NAND gate design also helps minimize the required transistor size, which alleviates the loading capacitance of clock tree as well. Simulation results reveal that, compared with prior work, our design can achieve 20.5% and 23% savings respectively in power and circuit area.
ER -