The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. ex. Some numerals are expressed as "XNUMX".
Copyrights notice
The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. Copyrights notice
Pengesanan isyarat sementara biasanya dilakukan dengan memeriksa kuasa dan variasi spektrum isyarat yang diterima, tetapi ia menjadi tugas yang sukar apabila bunyi latar belakang menjadi besar. Dalam makalah ini, kami mencadangkan algoritma pengesanan sementara yang teguh menggunakan modul penindasan hingar EVRC. Kami mentakrifkan parameter baharu daripada output modul penindasan hingar EVRC untuk pengesanan sementara. Keputusan eksperimen dengan pelbagai jenis transien dalam air telah menunjukkan bahawa kaedah yang dicadangkan mengatasi kaedah berasaskan tenaga konvensional dan mencapai peningkatan prestasi kadar pengesanan sebanyak 7% hingga 15% untuk pelbagai jenis bunyi latar belakang.
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Salinan
Taehwan KIM, Keunsung BAE, "Robust Detection of Underwater Transient Signals Using EVRC Noise Suppression Module" in IEICE TRANSACTIONS on Fundamentals,
vol. E93-A, no. 7, pp. 1371-1374, July 2010, doi: 10.1587/transfun.E93.A.1371.
Abstract: Detection of transient signals is generally done by examining power and spectral variation of the received signal, but it becomes a difficult task when the background noise gets large. In this paper, we propose a robust transient detection algorithm using the EVRC noise suppression module. We define new parameters from the outputs of the EVRC noise suppression module for transient detection. Experimental results with various types of underwater transients have shown that the proposed method outperforms the conventional energy-based method and achieved performance improvement of detection rate by 7% to 15% for various types of background noise.
URL: https://global.ieice.org/en_transactions/fundamentals/10.1587/transfun.E93.A.1371/_p
Salinan
@ARTICLE{e93-a_7_1371,
author={Taehwan KIM, Keunsung BAE, },
journal={IEICE TRANSACTIONS on Fundamentals},
title={Robust Detection of Underwater Transient Signals Using EVRC Noise Suppression Module},
year={2010},
volume={E93-A},
number={7},
pages={1371-1374},
abstract={Detection of transient signals is generally done by examining power and spectral variation of the received signal, but it becomes a difficult task when the background noise gets large. In this paper, we propose a robust transient detection algorithm using the EVRC noise suppression module. We define new parameters from the outputs of the EVRC noise suppression module for transient detection. Experimental results with various types of underwater transients have shown that the proposed method outperforms the conventional energy-based method and achieved performance improvement of detection rate by 7% to 15% for various types of background noise.},
keywords={},
doi={10.1587/transfun.E93.A.1371},
ISSN={1745-1337},
month={July},}
Salinan
TY - JOUR
TI - Robust Detection of Underwater Transient Signals Using EVRC Noise Suppression Module
T2 - IEICE TRANSACTIONS on Fundamentals
SP - 1371
EP - 1374
AU - Taehwan KIM
AU - Keunsung BAE
PY - 2010
DO - 10.1587/transfun.E93.A.1371
JO - IEICE TRANSACTIONS on Fundamentals
SN - 1745-1337
VL - E93-A
IS - 7
JA - IEICE TRANSACTIONS on Fundamentals
Y1 - July 2010
AB - Detection of transient signals is generally done by examining power and spectral variation of the received signal, but it becomes a difficult task when the background noise gets large. In this paper, we propose a robust transient detection algorithm using the EVRC noise suppression module. We define new parameters from the outputs of the EVRC noise suppression module for transient detection. Experimental results with various types of underwater transients have shown that the proposed method outperforms the conventional energy-based method and achieved performance improvement of detection rate by 7% to 15% for various types of background noise.
ER -