The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. ex. Some numerals are expressed as "XNUMX".
Copyrights notice
The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. Copyrights notice
Kami mencadangkan, dalam surat ini, jenis penapis penyahtanda imej baharu menggunakan teknik analisis data. Kami berurusan dengan piksel sebagai data dan mengekstrak kelompok paling dominan daripada piksel dalam tetingkap penapisan. Kami mengeluarkan centroid kluster yang diekstrak. Kami menunjukkan bahawa penapis graf-spektrum ini boleh mengurangkan campuran bunyi impulsif Gaussian dan rawak secara berkesan.
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Salinan
Yu QIU, Zenggang DU, Kiichi URAHAMA, "Graph-Spectral Filter for Removing Mixture of Gaussian and Random Impulsive Noise" in IEICE TRANSACTIONS on Fundamentals,
vol. E94-A, no. 1, pp. 457-460, January 2011, doi: 10.1587/transfun.E94.A.457.
Abstract: We propose, in this letter, a new type of image denoising filter using a data analysis technique. We deal with pixels as data and extract the most dominant cluster from pixels in the filtering window. We output the centroid of the extracted cluster. We demonstrate that this graph-spectral filter can effectively reduce a mixture of Gaussian and random impulsive noise.
URL: https://global.ieice.org/en_transactions/fundamentals/10.1587/transfun.E94.A.457/_p
Salinan
@ARTICLE{e94-a_1_457,
author={Yu QIU, Zenggang DU, Kiichi URAHAMA, },
journal={IEICE TRANSACTIONS on Fundamentals},
title={Graph-Spectral Filter for Removing Mixture of Gaussian and Random Impulsive Noise},
year={2011},
volume={E94-A},
number={1},
pages={457-460},
abstract={We propose, in this letter, a new type of image denoising filter using a data analysis technique. We deal with pixels as data and extract the most dominant cluster from pixels in the filtering window. We output the centroid of the extracted cluster. We demonstrate that this graph-spectral filter can effectively reduce a mixture of Gaussian and random impulsive noise.},
keywords={},
doi={10.1587/transfun.E94.A.457},
ISSN={1745-1337},
month={January},}
Salinan
TY - JOUR
TI - Graph-Spectral Filter for Removing Mixture of Gaussian and Random Impulsive Noise
T2 - IEICE TRANSACTIONS on Fundamentals
SP - 457
EP - 460
AU - Yu QIU
AU - Zenggang DU
AU - Kiichi URAHAMA
PY - 2011
DO - 10.1587/transfun.E94.A.457
JO - IEICE TRANSACTIONS on Fundamentals
SN - 1745-1337
VL - E94-A
IS - 1
JA - IEICE TRANSACTIONS on Fundamentals
Y1 - January 2011
AB - We propose, in this letter, a new type of image denoising filter using a data analysis technique. We deal with pixels as data and extract the most dominant cluster from pixels in the filtering window. We output the centroid of the extracted cluster. We demonstrate that this graph-spectral filter can effectively reduce a mixture of Gaussian and random impulsive noise.
ER -