The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. ex. Some numerals are expressed as "XNUMX".
Copyrights notice
The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. Copyrights notice
Dalam [1], Bellare, Boldyreva, dan Micali menangani keselamatan penyulitan kunci awam (PKE) dalam tetapan berbilang pengguna (dipanggil model BBM dalam kertas ini). Mereka menunjukkan bahawa walaupun tidak dapat dibezakan dalam model BBM disebabkan oleh model konvensional, pengurangannya jauh dari ketat secara umum, dan ini membawa masalah panjang kunci yang serius. Dalam kertas ini, kita membincangkan skim PKE di mana keselamatan IND-CCA dalam model BBM boleh diperolehi dengan ketat daripada keselamatan IND-CCA. Kami memanggil skim PKE sedemikian IND-CCA selamat dalam model BBM dengan pengurangan keselamatan invarian (secara ringkas, SR-invariant IND-CCABBM mendapatkan). Skim ini tidak pernah mengalami masalah panjang kunci yang mendasari dalam model BBM. Kami membentangkan tiga contoh IND-CCA invarian SRBBM skim PKE selamat: yang pertama adalah berdasarkan skim PKE Fujisaki-Okamoto [7], yang kedua adalah berdasarkan skim PKE Bellare-Rogaway [3], dan yang terakhir adalah berdasarkan skim PKE Cramer-Shoup [5].
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Salinan
Mototsugu NISHIOKA, Naohisa KOMATSU, "Public-Key Encryptions with Invariant Security Reductions in the Multi-User Setting" in IEICE TRANSACTIONS on Fundamentals,
vol. E94-A, no. 2, pp. 735-760, February 2011, doi: 10.1587/transfun.E94.A.735.
Abstract: In [1], Bellare, Boldyreva, and Micali addressed the security of public-key encryptions (PKEs) in a multi-user setting (called the BBM model in this paper). They showed that although the indistinguishability in the BBM model is induced from that in the conventional model, its reduction is far from tight in general, and this brings a serious key length problem. In this paper, we discuss PKE schemes in which the IND-CCA security in the BBM model can be obtained tightly from the IND-CCA security. We call such PKE schemes IND-CCA secure in the BBM model with invariant security reductions (briefly, SR-invariant IND-CCABBM secure). These schemes never suffer from the underlying key length problem in the BBM model. We present three instances of an SR-invariant IND-CCABBM secure PKE scheme: the first is based on the Fujisaki-Okamoto PKE scheme [7], the second is based on the Bellare-Rogaway PKE scheme [3], and the last is based on the Cramer-Shoup PKE scheme [5].
URL: https://global.ieice.org/en_transactions/fundamentals/10.1587/transfun.E94.A.735/_p
Salinan
@ARTICLE{e94-a_2_735,
author={Mototsugu NISHIOKA, Naohisa KOMATSU, },
journal={IEICE TRANSACTIONS on Fundamentals},
title={Public-Key Encryptions with Invariant Security Reductions in the Multi-User Setting},
year={2011},
volume={E94-A},
number={2},
pages={735-760},
abstract={In [1], Bellare, Boldyreva, and Micali addressed the security of public-key encryptions (PKEs) in a multi-user setting (called the BBM model in this paper). They showed that although the indistinguishability in the BBM model is induced from that in the conventional model, its reduction is far from tight in general, and this brings a serious key length problem. In this paper, we discuss PKE schemes in which the IND-CCA security in the BBM model can be obtained tightly from the IND-CCA security. We call such PKE schemes IND-CCA secure in the BBM model with invariant security reductions (briefly, SR-invariant IND-CCABBM secure). These schemes never suffer from the underlying key length problem in the BBM model. We present three instances of an SR-invariant IND-CCABBM secure PKE scheme: the first is based on the Fujisaki-Okamoto PKE scheme [7], the second is based on the Bellare-Rogaway PKE scheme [3], and the last is based on the Cramer-Shoup PKE scheme [5].},
keywords={},
doi={10.1587/transfun.E94.A.735},
ISSN={1745-1337},
month={February},}
Salinan
TY - JOUR
TI - Public-Key Encryptions with Invariant Security Reductions in the Multi-User Setting
T2 - IEICE TRANSACTIONS on Fundamentals
SP - 735
EP - 760
AU - Mototsugu NISHIOKA
AU - Naohisa KOMATSU
PY - 2011
DO - 10.1587/transfun.E94.A.735
JO - IEICE TRANSACTIONS on Fundamentals
SN - 1745-1337
VL - E94-A
IS - 2
JA - IEICE TRANSACTIONS on Fundamentals
Y1 - February 2011
AB - In [1], Bellare, Boldyreva, and Micali addressed the security of public-key encryptions (PKEs) in a multi-user setting (called the BBM model in this paper). They showed that although the indistinguishability in the BBM model is induced from that in the conventional model, its reduction is far from tight in general, and this brings a serious key length problem. In this paper, we discuss PKE schemes in which the IND-CCA security in the BBM model can be obtained tightly from the IND-CCA security. We call such PKE schemes IND-CCA secure in the BBM model with invariant security reductions (briefly, SR-invariant IND-CCABBM secure). These schemes never suffer from the underlying key length problem in the BBM model. We present three instances of an SR-invariant IND-CCABBM secure PKE scheme: the first is based on the Fujisaki-Okamoto PKE scheme [7], the second is based on the Bellare-Rogaway PKE scheme [3], and the last is based on the Cramer-Shoup PKE scheme [5].
ER -