The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. ex. Some numerals are expressed as "XNUMX".
Copyrights notice
The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. Copyrights notice
Padanan Corak Titik (PPM) adalah masalah penting dalam banyak analisis imej dan tugas penglihatan komputer. Kertas kerja ini membentangkan algoritma dua peringkat untuk masalah PPM menggunakan pemasangan elips dan imbasan Hilbert dwi. Pada peringkat padanan pertama, parameter transformasi dianggarkan secara kasar dengan menggunakan empat titik nod elips yang dipasang oleh Weighted Least Square Fitting (WLSF). Kemudian, imbasan Hilbert digunakan dalam dua aspek peringkat padanan kedua: ia digunakan pada ukuran persamaan dan ia juga digunakan untuk pengurangan ruang carian. Ukuran persamaan bernama Hilbert Scanning Distance (HSD) boleh dikira pantas dengan menukar koordinat 2-D titik 2-D kepada maklumat ruang 1-D menggunakan imbasan Hilbert. Sebaliknya, ruang carian ND boleh ditukar kepada jujukan ruang carian 1-D oleh ND Hilbert Scan dan strategi carian yang cekap dicadangkan pada jujukan ruang carian 1-D. Dalam eksperimen, kami menggunakan kedua-dua data set titik simulasi dan imej cap jari sebenar untuk menilai prestasi algoritma kami, dan algoritma kami memberikan hasil yang memuaskan dalam ketepatan dan kecekapan.
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Salinan
Li TIAN, Sei-ichiro KAMATA, "A Two-Stage Point Pattern Matching Algorithm Using Ellipse Fitting and Dual Hilbert Scans" in IEICE TRANSACTIONS on Information,
vol. E91-D, no. 10, pp. 2477-2484, October 2008, doi: 10.1093/ietisy/e91-d.10.2477.
Abstract: Point Pattern Matching (PPM) is an essential problem in many image analysis and computer vision tasks. This paper presents a two-stage algorithm for PPM problem using ellipse fitting and dual Hilbert scans. In the first matching stage, transformation parameters are coarsely estimated by using four node points of ellipses which are fitted by Weighted Least Square Fitting (WLSF). Then, Hilbert scans are used in two aspects of the second matching stage: it is applied to the similarity measure and it is also used for search space reduction. The similarity measure named Hilbert Scanning Distance (HSD) can be computed fast by converting the 2-D coordinates of 2-D points into 1-D space information using Hilbert scan. On the other hand, the N-D search space can be converted to a 1-D search space sequence by N-D Hilbert Scan and an efficient search strategy is proposed on the 1-D search space sequence. In the experiments, we use both simulated point set data and real fingerprint images to evaluate the performance of our algorithm, and our algorithm gives satisfying results both in accuracy and efficiency.
URL: https://global.ieice.org/en_transactions/information/10.1093/ietisy/e91-d.10.2477/_p
Salinan
@ARTICLE{e91-d_10_2477,
author={Li TIAN, Sei-ichiro KAMATA, },
journal={IEICE TRANSACTIONS on Information},
title={A Two-Stage Point Pattern Matching Algorithm Using Ellipse Fitting and Dual Hilbert Scans},
year={2008},
volume={E91-D},
number={10},
pages={2477-2484},
abstract={Point Pattern Matching (PPM) is an essential problem in many image analysis and computer vision tasks. This paper presents a two-stage algorithm for PPM problem using ellipse fitting and dual Hilbert scans. In the first matching stage, transformation parameters are coarsely estimated by using four node points of ellipses which are fitted by Weighted Least Square Fitting (WLSF). Then, Hilbert scans are used in two aspects of the second matching stage: it is applied to the similarity measure and it is also used for search space reduction. The similarity measure named Hilbert Scanning Distance (HSD) can be computed fast by converting the 2-D coordinates of 2-D points into 1-D space information using Hilbert scan. On the other hand, the N-D search space can be converted to a 1-D search space sequence by N-D Hilbert Scan and an efficient search strategy is proposed on the 1-D search space sequence. In the experiments, we use both simulated point set data and real fingerprint images to evaluate the performance of our algorithm, and our algorithm gives satisfying results both in accuracy and efficiency.},
keywords={},
doi={10.1093/ietisy/e91-d.10.2477},
ISSN={1745-1361},
month={October},}
Salinan
TY - JOUR
TI - A Two-Stage Point Pattern Matching Algorithm Using Ellipse Fitting and Dual Hilbert Scans
T2 - IEICE TRANSACTIONS on Information
SP - 2477
EP - 2484
AU - Li TIAN
AU - Sei-ichiro KAMATA
PY - 2008
DO - 10.1093/ietisy/e91-d.10.2477
JO - IEICE TRANSACTIONS on Information
SN - 1745-1361
VL - E91-D
IS - 10
JA - IEICE TRANSACTIONS on Information
Y1 - October 2008
AB - Point Pattern Matching (PPM) is an essential problem in many image analysis and computer vision tasks. This paper presents a two-stage algorithm for PPM problem using ellipse fitting and dual Hilbert scans. In the first matching stage, transformation parameters are coarsely estimated by using four node points of ellipses which are fitted by Weighted Least Square Fitting (WLSF). Then, Hilbert scans are used in two aspects of the second matching stage: it is applied to the similarity measure and it is also used for search space reduction. The similarity measure named Hilbert Scanning Distance (HSD) can be computed fast by converting the 2-D coordinates of 2-D points into 1-D space information using Hilbert scan. On the other hand, the N-D search space can be converted to a 1-D search space sequence by N-D Hilbert Scan and an efficient search strategy is proposed on the 1-D search space sequence. In the experiments, we use both simulated point set data and real fingerprint images to evaluate the performance of our algorithm, and our algorithm gives satisfying results both in accuracy and efficiency.
ER -