The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. ex. Some numerals are expressed as "XNUMX".
Copyrights notice
The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. Copyrights notice
Masalah pengurusan penimbal dalam talian merumuskan masalah dasar beratur suis rangkaian yang menyokong jaminan QoS (Kualiti Perkhidmatan). Untuk masalah ini, beberapa model dipertimbangkan. Dalam kertas ini, kami menumpukan pada suis memori kongsi dengan preemption. Kami membuktikan bahawa nisbah daya saing Penurunan Barisan Terpanjang (Sambungan LQ) polisi ialah (4M-4)/(3M-2) dalam kes N=2, di mana N ialah bilangan port keluaran dalam suis dan M ialah saiz penimbal. Ini sepadan dengan sempadan bawah yang diberikan oleh Hahne, Kesselman dan Mansour. Juga, dalam kes sewenang-wenangnya N, kami menambah baik nisbah daya saing bagi Sambungan LQ dari 2 hingga 2 - (1/M) minK = 1, 2, ..., N{
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Salinan
Koji KOBAYASHI, Shuichi MIYAZAKI, Yasuo OKABE, "A Tight Bound on Online Buffer Management for Two-Port Shared-Memory Switches" in IEICE TRANSACTIONS on Information,
vol. E91-D, no. 8, pp. 2105-2114, August 2008, doi: 10.1093/ietisy/e91-d.8.2105.
Abstract: The online buffer management problem formulates the problem of queueing policies of network switches supporting QoS (Quality of Service) guarantee. For this problem, several models are considered.In this paper, we focus on shared memory switches with preemption. We prove that the competitive ratio of the Longest Queue Drop (LQD) policy is (4M-4)/(3M-2) in the case of N=2, where N is the number of output ports in a switch and M is the size of the buffer.This matches the lower bound given by Hahne, Kesselman and Mansour.Also, in the case of arbitrary N, we improve the competitive ratio of LQD from 2 to 2 - (1/M) minK = 1, 2, ..., N{
URL: https://global.ieice.org/en_transactions/information/10.1093/ietisy/e91-d.8.2105/_p
Salinan
@ARTICLE{e91-d_8_2105,
author={Koji KOBAYASHI, Shuichi MIYAZAKI, Yasuo OKABE, },
journal={IEICE TRANSACTIONS on Information},
title={A Tight Bound on Online Buffer Management for Two-Port Shared-Memory Switches},
year={2008},
volume={E91-D},
number={8},
pages={2105-2114},
abstract={The online buffer management problem formulates the problem of queueing policies of network switches supporting QoS (Quality of Service) guarantee. For this problem, several models are considered.In this paper, we focus on shared memory switches with preemption. We prove that the competitive ratio of the Longest Queue Drop (LQD) policy is (4M-4)/(3M-2) in the case of N=2, where N is the number of output ports in a switch and M is the size of the buffer.This matches the lower bound given by Hahne, Kesselman and Mansour.Also, in the case of arbitrary N, we improve the competitive ratio of LQD from 2 to 2 - (1/M) minK = 1, 2, ..., N{
keywords={},
doi={10.1093/ietisy/e91-d.8.2105},
ISSN={1745-1361},
month={August},}
Salinan
TY - JOUR
TI - A Tight Bound on Online Buffer Management for Two-Port Shared-Memory Switches
T2 - IEICE TRANSACTIONS on Information
SP - 2105
EP - 2114
AU - Koji KOBAYASHI
AU - Shuichi MIYAZAKI
AU - Yasuo OKABE
PY - 2008
DO - 10.1093/ietisy/e91-d.8.2105
JO - IEICE TRANSACTIONS on Information
SN - 1745-1361
VL - E91-D
IS - 8
JA - IEICE TRANSACTIONS on Information
Y1 - August 2008
AB - The online buffer management problem formulates the problem of queueing policies of network switches supporting QoS (Quality of Service) guarantee. For this problem, several models are considered.In this paper, we focus on shared memory switches with preemption. We prove that the competitive ratio of the Longest Queue Drop (LQD) policy is (4M-4)/(3M-2) in the case of N=2, where N is the number of output ports in a switch and M is the size of the buffer.This matches the lower bound given by Hahne, Kesselman and Mansour.Also, in the case of arbitrary N, we improve the competitive ratio of LQD from 2 to 2 - (1/M) minK = 1, 2, ..., N{
ER -