The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. ex. Some numerals are expressed as "XNUMX".
Copyrights notice
The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. Copyrights notice
Algoritma pengoptimuman gabungan baru dipanggil Kaedah pengoptimuman diskret 2 peringkat (2DOM) dicadangkan untuk masalah subgraf biasa (LCSP) terbesar dalam kertas ini. Diberi dua graf G=(V1, E1) dan H=(V2, E2), matlamat LCSP adalah untuk mencari subgraf G'=(V1', E1') daripada G dan subgraf H'=(V2', E2') daripada H seperti itu G' and H' bukan sahaja isomorfik antara satu sama lain tetapi juga bilangan tepinya dimaksimumkan. Kedua-dua graf G' and H' adalah isomorfik apabila |V1'|=|V2'| dan |E1'|=|E2'|, dan wujud surat-menyurat satu-dengan-satu puncak f: V1'
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Salinan
Nobuo FUNABIKI, Junji KITAMICHI, "A Two-Stage Discrete Optimization Method for Largest Common Subgraph Problems" in IEICE TRANSACTIONS on Information,
vol. E82-D, no. 8, pp. 1145-1153, August 1999, doi: .
Abstract: A novel combinatorial optimization algorithm called 2-stage discrete optimization method (2DOM) is proposed for the largest common subgraph problem (LCSP) in this paper. Given two graphs G=(V1, E1) and H=(V2, E2), the goal of LCSP is to find a subgraph G'=(V1', E1') of G and a subgraph H'=(V2', E2') of H such that G' and H' are not only isomorphic to each other but also their number of edges is maximized. The two graphs G' and H' are isomorphic when |V1'|=|V2'| and |E1'|=|E2'|, and there exists one-to-one vertex correspondence f: V1'
URL: https://global.ieice.org/en_transactions/information/10.1587/e82-d_8_1145/_p
Salinan
@ARTICLE{e82-d_8_1145,
author={Nobuo FUNABIKI, Junji KITAMICHI, },
journal={IEICE TRANSACTIONS on Information},
title={A Two-Stage Discrete Optimization Method for Largest Common Subgraph Problems},
year={1999},
volume={E82-D},
number={8},
pages={1145-1153},
abstract={A novel combinatorial optimization algorithm called 2-stage discrete optimization method (2DOM) is proposed for the largest common subgraph problem (LCSP) in this paper. Given two graphs G=(V1, E1) and H=(V2, E2), the goal of LCSP is to find a subgraph G'=(V1', E1') of G and a subgraph H'=(V2', E2') of H such that G' and H' are not only isomorphic to each other but also their number of edges is maximized. The two graphs G' and H' are isomorphic when |V1'|=|V2'| and |E1'|=|E2'|, and there exists one-to-one vertex correspondence f: V1'
keywords={},
doi={},
ISSN={},
month={August},}
Salinan
TY - JOUR
TI - A Two-Stage Discrete Optimization Method for Largest Common Subgraph Problems
T2 - IEICE TRANSACTIONS on Information
SP - 1145
EP - 1153
AU - Nobuo FUNABIKI
AU - Junji KITAMICHI
PY - 1999
DO -
JO - IEICE TRANSACTIONS on Information
SN -
VL - E82-D
IS - 8
JA - IEICE TRANSACTIONS on Information
Y1 - August 1999
AB - A novel combinatorial optimization algorithm called 2-stage discrete optimization method (2DOM) is proposed for the largest common subgraph problem (LCSP) in this paper. Given two graphs G=(V1, E1) and H=(V2, E2), the goal of LCSP is to find a subgraph G'=(V1', E1') of G and a subgraph H'=(V2', E2') of H such that G' and H' are not only isomorphic to each other but also their number of edges is maximized. The two graphs G' and H' are isomorphic when |V1'|=|V2'| and |E1'|=|E2'|, and there exists one-to-one vertex correspondence f: V1'
ER -