The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. ex. Some numerals are expressed as "XNUMX".
Copyrights notice
The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. Copyrights notice
Apabila resolusi antara kepingan hirisan imej tomografi adalah besar, adalah perlu untuk menganggarkan lokasi dan keamatan piksel, yang akan muncul dalam kepingan perantaraan yang tidak wujud. Kertas kerja ini membentangkan kaedah baru untuk menghasilkan kepingan perubatan yang hilang daripada dua kepingan yang diberikan. Ia menggunakan kontur organ sebagai parameter kawalan kepada maklumat intensiti dalam celah fizikal kepingan perubatan berurutan. Model Snake digunakan untuk menjana titik kawalan yang diperlukan untuk algoritma morphing spline badan elastik (EBS). Maklumat kontur yang diperoleh daripada pra-proses segmentasi ini kemudiannya diproses dan digunakan sebagai parameter kawalan untuk meledingkan kawasan yang sepadan dalam kedua-dua kepingan input kepada bentuk yang serasi. Dengan cara ini, maklumat keamatan hirisan perantaraan yang diinterpolasi boleh diperolehi dengan lebih tepat. Berbanding dengan kaedah interpolasi intensiti sedia ada, termasuk interpolasi linear, yang hanya mempertimbangkan titik sepadan dalam kejiranan fizikal yang kecil, kaedah ini meledingkan imej data ke dalam bentuk yang serupa mengikut maklumat kontur untuk menyediakan hubungan surat-menyurat yang lebih bermakna.
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Salinan
Hasnine HAQUE, Aboul-Ella HASSANIEN, Masayuki NAKAJIMA, "Generation of Missing Medical Slices Using Morphing Technology" in IEICE TRANSACTIONS on Information,
vol. E83-D, no. 7, pp. 1400-1407, July 2000, doi: .
Abstract: When the inter-slice resolution of tomographic image slices is large, it is necessary to estimate the locations and intensities of pixels, which would appear in the non-existed intermediate slices. This paper presents a new method for generating the missing medical slices from two given slices. It uses the contours of organs as the control parameters to the intensity information in the physical gaps of sequential medical slices. The Snake model is used for generating the control points required for the elastic body spline (EBS) morphing algorithm. Contour information derived from this segmentation pre-process is then further processed and used as control parameters to warp the corresponding regions in both input slices into compatible shapes. In this way, the intensity information of the interpolated intermediate slices can be derived more faithfully. In comparison with the existing intensity interpolation methods, including linear interpolation, which only considers corresponding points in a small physical neighborhood, this method warps the data images into similar shapes according to contour information to provide a more meaningful correspondence relationship.
URL: https://global.ieice.org/en_transactions/information/10.1587/e83-d_7_1400/_p
Salinan
@ARTICLE{e83-d_7_1400,
author={Hasnine HAQUE, Aboul-Ella HASSANIEN, Masayuki NAKAJIMA, },
journal={IEICE TRANSACTIONS on Information},
title={Generation of Missing Medical Slices Using Morphing Technology},
year={2000},
volume={E83-D},
number={7},
pages={1400-1407},
abstract={When the inter-slice resolution of tomographic image slices is large, it is necessary to estimate the locations and intensities of pixels, which would appear in the non-existed intermediate slices. This paper presents a new method for generating the missing medical slices from two given slices. It uses the contours of organs as the control parameters to the intensity information in the physical gaps of sequential medical slices. The Snake model is used for generating the control points required for the elastic body spline (EBS) morphing algorithm. Contour information derived from this segmentation pre-process is then further processed and used as control parameters to warp the corresponding regions in both input slices into compatible shapes. In this way, the intensity information of the interpolated intermediate slices can be derived more faithfully. In comparison with the existing intensity interpolation methods, including linear interpolation, which only considers corresponding points in a small physical neighborhood, this method warps the data images into similar shapes according to contour information to provide a more meaningful correspondence relationship.},
keywords={},
doi={},
ISSN={},
month={July},}
Salinan
TY - JOUR
TI - Generation of Missing Medical Slices Using Morphing Technology
T2 - IEICE TRANSACTIONS on Information
SP - 1400
EP - 1407
AU - Hasnine HAQUE
AU - Aboul-Ella HASSANIEN
AU - Masayuki NAKAJIMA
PY - 2000
DO -
JO - IEICE TRANSACTIONS on Information
SN -
VL - E83-D
IS - 7
JA - IEICE TRANSACTIONS on Information
Y1 - July 2000
AB - When the inter-slice resolution of tomographic image slices is large, it is necessary to estimate the locations and intensities of pixels, which would appear in the non-existed intermediate slices. This paper presents a new method for generating the missing medical slices from two given slices. It uses the contours of organs as the control parameters to the intensity information in the physical gaps of sequential medical slices. The Snake model is used for generating the control points required for the elastic body spline (EBS) morphing algorithm. Contour information derived from this segmentation pre-process is then further processed and used as control parameters to warp the corresponding regions in both input slices into compatible shapes. In this way, the intensity information of the interpolated intermediate slices can be derived more faithfully. In comparison with the existing intensity interpolation methods, including linear interpolation, which only considers corresponding points in a small physical neighborhood, this method warps the data images into similar shapes according to contour information to provide a more meaningful correspondence relationship.
ER -