The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. ex. Some numerals are expressed as "XNUMX".
Copyrights notice
The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. Copyrights notice
Skim sambungan ganti lanjutan untuk K-daripada-N redundansi dicadangkan untuk membina tatasusunan nod pemprosesan cincin toleran kesalahan atau toroidal yang boleh meningkatkan emulasi hiperkubus binari dengan menggunakan rangkaian pintasan. Dengan skema ini, konfigurasi redundansi komponen untuk tatasusunan asas dengan nombor tetap nod primer, seperti untuk cincin 8-nod atau 32-nod toroidal mesh, boleh dibina dengan menggunakan pautan pintasan dengan struktur bas tersegmen untuk menyambung secara selektif. nod primer kepada nod ganti secara selari. Pautan pintasan ini diperuntukkan kepada nod utama melalui pewarnaan nod graf dengan jarak antara nod minimum tiga untuk menggunakan pautan pintasan sebagai sambungan hiperkubus serta untuk mencapai toleransi kesalahan yang kuat untuk mengkonfigurasi semula tatasusunan asas dengan primer topologi rangkaian. Konfigurasi lebihan lanjutan untuk tatasusunan tahan kerosakan yang besar boleh dibina dengan menyambungkan konfigurasi komponen dengan menggunakan suis luaran jenis hab yang disediakan pada nod bas pautan pintasan. Konfigurasi ini mempunyai topologi rangkaian sambungan bintang selari sub-hiperkubus yang diameternya lebih kecil daripada hiperkubus biasa.
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Salinan
Nobuo TSUDA, "Fault-Tolerant Ring- and Toroidal Mesh-Connected Processor Arrays Able to Enhance Emulation of Hypercubes" in IEICE TRANSACTIONS on Information,
vol. E84-D, no. 11, pp. 1452-1461, November 2001, doi: .
Abstract: An advanced spare-connection scheme for K-out-of-N redundancy is proposed for constructing fault-tolerant ring- or toroidal mesh-connected processing-node arrays able to enhance emulation of binary hypercubes by using bypass networks. With this scheme, a component redundancy configuration for a base array with a fixed number of primary nodes, such as that for 8-node ring or 32-node toroidal mesh, can be constructed by using bypass links with a segmented bus structure to selectively connect the primary nodes to a spare node in parallel. These bypass links are allocated to the primary nodes by graph-node coloring with a minimum inter-node distance of three in order to use the bypass links as the hypercube connections as well as to attain strong fault tolerance for reconfiguring the base array with the primary network topology. An extended redundancy configuration for a large fault-tolerant array can be constructed by connecting the component configurations by using external switches of a hub type provided at the bus nodes of the bypass links. This configuration has a network topology of the parallel star-connections of sub-hypercubes whose diameter is smaller than that of the regular hypercube.
URL: https://global.ieice.org/en_transactions/information/10.1587/e84-d_11_1452/_p
Salinan
@ARTICLE{e84-d_11_1452,
author={Nobuo TSUDA, },
journal={IEICE TRANSACTIONS on Information},
title={Fault-Tolerant Ring- and Toroidal Mesh-Connected Processor Arrays Able to Enhance Emulation of Hypercubes},
year={2001},
volume={E84-D},
number={11},
pages={1452-1461},
abstract={An advanced spare-connection scheme for K-out-of-N redundancy is proposed for constructing fault-tolerant ring- or toroidal mesh-connected processing-node arrays able to enhance emulation of binary hypercubes by using bypass networks. With this scheme, a component redundancy configuration for a base array with a fixed number of primary nodes, such as that for 8-node ring or 32-node toroidal mesh, can be constructed by using bypass links with a segmented bus structure to selectively connect the primary nodes to a spare node in parallel. These bypass links are allocated to the primary nodes by graph-node coloring with a minimum inter-node distance of three in order to use the bypass links as the hypercube connections as well as to attain strong fault tolerance for reconfiguring the base array with the primary network topology. An extended redundancy configuration for a large fault-tolerant array can be constructed by connecting the component configurations by using external switches of a hub type provided at the bus nodes of the bypass links. This configuration has a network topology of the parallel star-connections of sub-hypercubes whose diameter is smaller than that of the regular hypercube.},
keywords={},
doi={},
ISSN={},
month={November},}
Salinan
TY - JOUR
TI - Fault-Tolerant Ring- and Toroidal Mesh-Connected Processor Arrays Able to Enhance Emulation of Hypercubes
T2 - IEICE TRANSACTIONS on Information
SP - 1452
EP - 1461
AU - Nobuo TSUDA
PY - 2001
DO -
JO - IEICE TRANSACTIONS on Information
SN -
VL - E84-D
IS - 11
JA - IEICE TRANSACTIONS on Information
Y1 - November 2001
AB - An advanced spare-connection scheme for K-out-of-N redundancy is proposed for constructing fault-tolerant ring- or toroidal mesh-connected processing-node arrays able to enhance emulation of binary hypercubes by using bypass networks. With this scheme, a component redundancy configuration for a base array with a fixed number of primary nodes, such as that for 8-node ring or 32-node toroidal mesh, can be constructed by using bypass links with a segmented bus structure to selectively connect the primary nodes to a spare node in parallel. These bypass links are allocated to the primary nodes by graph-node coloring with a minimum inter-node distance of three in order to use the bypass links as the hypercube connections as well as to attain strong fault tolerance for reconfiguring the base array with the primary network topology. An extended redundancy configuration for a large fault-tolerant array can be constructed by connecting the component configurations by using external switches of a hub type provided at the bus nodes of the bypass links. This configuration has a network topology of the parallel star-connections of sub-hypercubes whose diameter is smaller than that of the regular hypercube.
ER -