The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. ex. Some numerals are expressed as "XNUMX".
Copyrights notice
The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. Copyrights notice
Sebilangan besar dokumen bercetak berwarna diterbitkan sekarang setiap hari. Beberapa pendekatan OCR bagi imej dokumen bercetak berwarna disediakan, tetapi ia biasanya tidak boleh berfungsi jika imej input condong. Pada tahun-tahun lalu, banyak algoritma disediakan untuk mengesan pencongan imej dokumen monokrom tetapi tiada satu pun daripada mereka memproses imej dokumen bercetak berwarna. Semua kaedah ini menganggap bahawa teks dicetak dalam warna hitam pada latar belakang putih dan tidak boleh digunakan untuk mengesan pencongan dalam imej dokumen yang dicetak berwarna. Dalam kertas ini, kami mencadangkan algoritma untuk mengesan sudut condong imej dokumen yang dicetak berwarna dan membinanya semula. Pendekatan kami terlebih dahulu menentukan variasi kiraan peralihan warna pada setiap sudut (dari -45
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Salinan
Yi-Kai CHEN, Jhing-Fa WANG, "Skew Detection and Reconstruction of Color-Printed Document Images" in IEICE TRANSACTIONS on Information,
vol. E84-D, no. 8, pp. 1018-1024, August 2001, doi: .
Abstract: Large amounts of color-printed documents are published now everyday. Some OCR approaches of color-printed document images are provided, but they cannot normally work if the input images skew. In the past years, many algorithms are provided to detect the skew of monochrome document images but none of them process color-printed document images. All of these methods assume that text is printed in black on a white background and cannot be applied to detect skew in color-printed document images. In this paper, we propose an algorithm to detect the skew angle of a color-printed document image and reconstruct it. Our approach first determines variation of color-transition count at each angle (from -45
URL: https://global.ieice.org/en_transactions/information/10.1587/e84-d_8_1018/_p
Salinan
@ARTICLE{e84-d_8_1018,
author={Yi-Kai CHEN, Jhing-Fa WANG, },
journal={IEICE TRANSACTIONS on Information},
title={Skew Detection and Reconstruction of Color-Printed Document Images},
year={2001},
volume={E84-D},
number={8},
pages={1018-1024},
abstract={Large amounts of color-printed documents are published now everyday. Some OCR approaches of color-printed document images are provided, but they cannot normally work if the input images skew. In the past years, many algorithms are provided to detect the skew of monochrome document images but none of them process color-printed document images. All of these methods assume that text is printed in black on a white background and cannot be applied to detect skew in color-printed document images. In this paper, we propose an algorithm to detect the skew angle of a color-printed document image and reconstruct it. Our approach first determines variation of color-transition count at each angle (from -45
keywords={},
doi={},
ISSN={},
month={August},}
Salinan
TY - JOUR
TI - Skew Detection and Reconstruction of Color-Printed Document Images
T2 - IEICE TRANSACTIONS on Information
SP - 1018
EP - 1024
AU - Yi-Kai CHEN
AU - Jhing-Fa WANG
PY - 2001
DO -
JO - IEICE TRANSACTIONS on Information
SN -
VL - E84-D
IS - 8
JA - IEICE TRANSACTIONS on Information
Y1 - August 2001
AB - Large amounts of color-printed documents are published now everyday. Some OCR approaches of color-printed document images are provided, but they cannot normally work if the input images skew. In the past years, many algorithms are provided to detect the skew of monochrome document images but none of them process color-printed document images. All of these methods assume that text is printed in black on a white background and cannot be applied to detect skew in color-printed document images. In this paper, we propose an algorithm to detect the skew angle of a color-printed document image and reconstruct it. Our approach first determines variation of color-transition count at each angle (from -45
ER -