The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. ex. Some numerals are expressed as "XNUMX".
Copyrights notice
The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. Copyrights notice
Kertas kerja ini membentangkan kaedah untuk menyahkekaburan deria perkataan dalam terjemahan mesin Korea-Jepun dengan menggunakan ontologi bebas bahasa. Ontologi ini menyimpan kekangan semantik antara konsep dan pengetahuan dunia yang lain, dan membolehkan sistem pemprosesan bahasa semula jadi menyelesaikan kekaburan semantik dengan membuat inferens dengan rangkaian konsep ontologi. Untuk memperoleh ontologi yang bebas bahasa dan praktikal secara munasabah dalam masa yang terhad dan dengan tenaga yang kurang, kami melanjutkan tesaurus Kadokawa sedia ada dengan memasukkan hubungan semantik tambahan ke dalam hierarkinya, yang diklasifikasikan sebagai hubungan kes dan hubungan semantik lain. Yang pertama boleh diperoleh dengan menukar maklumat valensi dan bingkai kes daripada kamus elektronik yang dibina sebelum ini yang digunakan dalam terjemahan mesin. Yang terakhir boleh diperoleh daripada maklumat kejadian bersama konsep, yang diekstrak secara automatik daripada korpus. Dalam sistem terjemahan mesin praktikal, kaedah nyahkekaburan deria perkataan kami mencapai peningkatan ketepatan purata sebanyak 6.0% untuk analisis Jepun dan sebanyak 9.2% untuk analisis Korea berbanding kaedah tanpa menggunakan ontologi.
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Salinan
Sin-Jae KANG, You-Jin CHUNG, Jong-Hyeok LEE, "Disambiguating Word Senses in Korean-Japanese Machine Translation by Using Semi-Automatically Constructed Ontology" in IEICE TRANSACTIONS on Information,
vol. E85-D, no. 10, pp. 1688-1697, October 2002, doi: .
Abstract: This paper presents a method for disambiguating word senses in Korean-Japanese machine translation by using a language independent ontology. This ontology stores semantic constraints between concepts and other world knowledge, and enables a natural language processing system to resolve semantic ambiguities by making inferences with the concept network of the ontology. In order to acquire a language-independent and reasonably practical ontology in a limited time and with less manpower, we extend the existing Kadokawa thesaurus by inserting additional semantic relations into its hierarchy, which are classified as case relations and other semantic relations. The former can be obtained by converting valency information and case frames from previously-built electronic dictionaries used in machine translation. The latter can be acquired from concept co-occurrence information, which is extracted automatically from a corpus. In practical machine translation systems, our word sense disambiguation method achieved an improvement of average precision by 6.0% for Japanese analysis and by 9.2% for Korean analysis over the method without using an ontology.
URL: https://global.ieice.org/en_transactions/information/10.1587/e85-d_10_1688/_p
Salinan
@ARTICLE{e85-d_10_1688,
author={Sin-Jae KANG, You-Jin CHUNG, Jong-Hyeok LEE, },
journal={IEICE TRANSACTIONS on Information},
title={Disambiguating Word Senses in Korean-Japanese Machine Translation by Using Semi-Automatically Constructed Ontology},
year={2002},
volume={E85-D},
number={10},
pages={1688-1697},
abstract={This paper presents a method for disambiguating word senses in Korean-Japanese machine translation by using a language independent ontology. This ontology stores semantic constraints between concepts and other world knowledge, and enables a natural language processing system to resolve semantic ambiguities by making inferences with the concept network of the ontology. In order to acquire a language-independent and reasonably practical ontology in a limited time and with less manpower, we extend the existing Kadokawa thesaurus by inserting additional semantic relations into its hierarchy, which are classified as case relations and other semantic relations. The former can be obtained by converting valency information and case frames from previously-built electronic dictionaries used in machine translation. The latter can be acquired from concept co-occurrence information, which is extracted automatically from a corpus. In practical machine translation systems, our word sense disambiguation method achieved an improvement of average precision by 6.0% for Japanese analysis and by 9.2% for Korean analysis over the method without using an ontology.},
keywords={},
doi={},
ISSN={},
month={October},}
Salinan
TY - JOUR
TI - Disambiguating Word Senses in Korean-Japanese Machine Translation by Using Semi-Automatically Constructed Ontology
T2 - IEICE TRANSACTIONS on Information
SP - 1688
EP - 1697
AU - Sin-Jae KANG
AU - You-Jin CHUNG
AU - Jong-Hyeok LEE
PY - 2002
DO -
JO - IEICE TRANSACTIONS on Information
SN -
VL - E85-D
IS - 10
JA - IEICE TRANSACTIONS on Information
Y1 - October 2002
AB - This paper presents a method for disambiguating word senses in Korean-Japanese machine translation by using a language independent ontology. This ontology stores semantic constraints between concepts and other world knowledge, and enables a natural language processing system to resolve semantic ambiguities by making inferences with the concept network of the ontology. In order to acquire a language-independent and reasonably practical ontology in a limited time and with less manpower, we extend the existing Kadokawa thesaurus by inserting additional semantic relations into its hierarchy, which are classified as case relations and other semantic relations. The former can be obtained by converting valency information and case frames from previously-built electronic dictionaries used in machine translation. The latter can be acquired from concept co-occurrence information, which is extracted automatically from a corpus. In practical machine translation systems, our word sense disambiguation method achieved an improvement of average precision by 6.0% for Japanese analysis and by 9.2% for Korean analysis over the method without using an ontology.
ER -