The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. ex. Some numerals are expressed as "XNUMX".
Copyrights notice
The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. Copyrights notice
Teknik baru untuk segmentasi automatik kawasan otak dalam imej MR saluran tunggal untuk visualisasi dan analisis otak manusia dibentangkan. Kaedah ini menghasilkan jumlah topeng otak dengan menggunakan ambang automatik berganda teknik pemasangan lengkung dan oleh operasi morfologi 3D. Pemasangan dua lengkung boleh mengurangkan ralat dalam pemasangan lengkung pada histogram imej MR. Operasi morfologi 3D, termasuk hakisan, pelabelan komponen bersambung, operasi ciri maks dan pelebaran, digunakan pada isipadu padu topeng yang dibina semula daripada topeng otak ambang. Kaedah ini secara automatik boleh membahagikan kawasan otak dalam mana-mana jenis jujukan yang dipaparkan, termasuk kepingan melampau, set data imej MR berwajaran SPGR, T1-, T2- dan PD yang tidak diperlukan untuk mengandungi keseluruhan otak. Dalam eksperimen, algoritma telah digunakan pada 20 set imej MR dan menunjukkan lebih 0.97 indeks persamaan berbanding dengan lukisan manual.
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Salinan
Tae-Woo KIM, Dong-Uk CHO, "Automatic Segmentation of a Brain Region in MR Images Using Automatic Thresholding and 3D Morphological Operations" in IEICE TRANSACTIONS on Information,
vol. E85-D, no. 10, pp. 1698-1709, October 2002, doi: .
Abstract: A novel technique for automatic segmentation of a brain region in single channel MR images for visualization and analysis of a human brain is presented. The method generates a volume of brain masks by automatic thresholding using a dual curve fitting technique and by 3D morphological operations. The dual curve fitting can reduce an error in curve fitting to the histogram of MR images. The 3D morphological operations, including erosion, labeling of connected-components, max-feature operation, and dilation, are applied to the cubic volume of masks reconstructed from the thresholded brain masks. This method can automatically segment a brain region in any displayed type of sequences, including extreme slices, of SPGR, T1-, T2-, and PD-weighted MR image data sets which are not required to contain the entire brain. In the experiments, the algorithm was applied to 20 sets of MR images and showed over 0.97 of similarity index in comparison with manual drawing.
URL: https://global.ieice.org/en_transactions/information/10.1587/e85-d_10_1698/_p
Salinan
@ARTICLE{e85-d_10_1698,
author={Tae-Woo KIM, Dong-Uk CHO, },
journal={IEICE TRANSACTIONS on Information},
title={Automatic Segmentation of a Brain Region in MR Images Using Automatic Thresholding and 3D Morphological Operations},
year={2002},
volume={E85-D},
number={10},
pages={1698-1709},
abstract={A novel technique for automatic segmentation of a brain region in single channel MR images for visualization and analysis of a human brain is presented. The method generates a volume of brain masks by automatic thresholding using a dual curve fitting technique and by 3D morphological operations. The dual curve fitting can reduce an error in curve fitting to the histogram of MR images. The 3D morphological operations, including erosion, labeling of connected-components, max-feature operation, and dilation, are applied to the cubic volume of masks reconstructed from the thresholded brain masks. This method can automatically segment a brain region in any displayed type of sequences, including extreme slices, of SPGR, T1-, T2-, and PD-weighted MR image data sets which are not required to contain the entire brain. In the experiments, the algorithm was applied to 20 sets of MR images and showed over 0.97 of similarity index in comparison with manual drawing.},
keywords={},
doi={},
ISSN={},
month={October},}
Salinan
TY - JOUR
TI - Automatic Segmentation of a Brain Region in MR Images Using Automatic Thresholding and 3D Morphological Operations
T2 - IEICE TRANSACTIONS on Information
SP - 1698
EP - 1709
AU - Tae-Woo KIM
AU - Dong-Uk CHO
PY - 2002
DO -
JO - IEICE TRANSACTIONS on Information
SN -
VL - E85-D
IS - 10
JA - IEICE TRANSACTIONS on Information
Y1 - October 2002
AB - A novel technique for automatic segmentation of a brain region in single channel MR images for visualization and analysis of a human brain is presented. The method generates a volume of brain masks by automatic thresholding using a dual curve fitting technique and by 3D morphological operations. The dual curve fitting can reduce an error in curve fitting to the histogram of MR images. The 3D morphological operations, including erosion, labeling of connected-components, max-feature operation, and dilation, are applied to the cubic volume of masks reconstructed from the thresholded brain masks. This method can automatically segment a brain region in any displayed type of sequences, including extreme slices, of SPGR, T1-, T2-, and PD-weighted MR image data sets which are not required to contain the entire brain. In the experiments, the algorithm was applied to 20 sets of MR images and showed over 0.97 of similarity index in comparison with manual drawing.
ER -