The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. ex. Some numerals are expressed as "XNUMX".
Copyrights notice
The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. Copyrights notice
Kertas kerja ini membentangkan algoritma pengekodan pertuturan 4-kbit/s berkualiti tinggi berdasarkan algoritma CELP. Pengekod beroperasi pada bingkai pertuturan 20 ms. Algoritma ini mempunyai empat ciri utama berikut: berbilang buku subkod, penukaran mod penyesuaian ke belakang, struktur nadi tersebar dan pemprosesan pasca hingar. Berbilang buku kod kecil terdiri daripada buku kod nadi dan buku kod rawak supaya mereka boleh mengendalikan kedua-dua isyarat, seperti bunyi (cth. bunyi tidak bersuara, bunyi pegun) dan seperti nadi (cth bersuara). Pensuisan mod penyesuaian ke belakang dilakukan menggunakan parameter yang dinyahkod; oleh itu, tiada bit mod tambahan dihantar. Saiz buku kod rawak ditukar dengan mod yang dipilih secara adaptif ke belakang. Kualiti subjektif pertuturan tidak bersuara atau isyarat seperti bunyi boleh dipertingkatkan dengan operasi pensuisan ini kerana saiz buku kod rawak meningkat dengan banyak dalam mod isyarat sedemikian. Struktur nadi tersebar memberikan prestasi yang lebih baik bagi pengujaan nadi jarang menggunakan denyutan tersebar dan bukannya denyutan unit ringkas. Pemprosesan pasca hingar menggunakan penjana hingar latar belakang pegun untuk menghasilkan isyarat hingar pegun. Ia meningkatkan kualiti subjektif isyarat dinyahkod dengan ketara di bawah pelbagai keadaan bunyi latar belakang. Ujian pendengaran subjektif dijalankan mengikut ujian ACR dan DCR. Keputusan ujian ACR menunjukkan bahawa prestasi asas MDP-CELP adalah bersamaan dengan 32-kbit/s modulasi kod nadi pembezaan adaptif (ADPCM). Keputusan ujian DCR menunjukkan bahawa prestasi MDP-CELP adalah bersamaan atau lebih baik daripada 8-kbit/s struktur konjugat algebra ramalan linear teruja (CS-ACELP) di bawah beberapa keadaan hingar latar belakang.
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Salinan
Hiroyuki EHARA, Koji YOSHIDA, Kazutoshi YASUNAGA, Toshiyuki MORII, "4-kbit/s Multi-Dispersed-Pulse-Based CELP (MDP-CELP) Speech Coder" in IEICE TRANSACTIONS on Information,
vol. E85-D, no. 2, pp. 392-401, February 2002, doi: .
Abstract: This paper presents a high quality 4-kbit/s speech coding algorithm based on a CELP algorithm. The coder operates on speech frames of 20 ms. The algorithm has following four main features: multiple sub-codebooks, backward adaptive mode switching, dispersed-pulse structure, and noise post-processing. The multiple sub-codebooks consist of a pulse-codebook and a random-codebook so that they can handle both signals, noise-like (e.g. unvoiced, stationary noise) and pulse-like (e.g. voiced). The backward adaptive mode switching is performed using decoded parameters; therefore, no additional mode bit is transmitted. The random-codebook size is switched with the backward adaptively selected mode. The subjective quality of unvoiced speech or noise-like signal can be improved by this switching operation because the random-codebook size is greatly increased in such signal mode. The dispersed-pulse structure provides better performance of sparse pulse excitation using dispersed pulses instead of simple unit pulses. The noise post-processing employs a stationary background noise generator for producing stationary noise signal. It significantly improves subjective quality of decoded signal under various background noise conditions. Subjective listening tests are conducted in accordance with ACR and DCR tests. The ACR test results indicate that the fundamental performance of the MDP-CELP is equivalent to that of 32-kbit/s adaptive differential pulse code modulation (ADPCM). The DCR test results show that the performance of the MDP-CELP is equivalent to or better than that of 8-kbit/s conjugate-structure algebraic code excited linear prediction (CS-ACELP) under several background noise conditions.
URL: https://global.ieice.org/en_transactions/information/10.1587/e85-d_2_392/_p
Salinan
@ARTICLE{e85-d_2_392,
author={Hiroyuki EHARA, Koji YOSHIDA, Kazutoshi YASUNAGA, Toshiyuki MORII, },
journal={IEICE TRANSACTIONS on Information},
title={4-kbit/s Multi-Dispersed-Pulse-Based CELP (MDP-CELP) Speech Coder},
year={2002},
volume={E85-D},
number={2},
pages={392-401},
abstract={This paper presents a high quality 4-kbit/s speech coding algorithm based on a CELP algorithm. The coder operates on speech frames of 20 ms. The algorithm has following four main features: multiple sub-codebooks, backward adaptive mode switching, dispersed-pulse structure, and noise post-processing. The multiple sub-codebooks consist of a pulse-codebook and a random-codebook so that they can handle both signals, noise-like (e.g. unvoiced, stationary noise) and pulse-like (e.g. voiced). The backward adaptive mode switching is performed using decoded parameters; therefore, no additional mode bit is transmitted. The random-codebook size is switched with the backward adaptively selected mode. The subjective quality of unvoiced speech or noise-like signal can be improved by this switching operation because the random-codebook size is greatly increased in such signal mode. The dispersed-pulse structure provides better performance of sparse pulse excitation using dispersed pulses instead of simple unit pulses. The noise post-processing employs a stationary background noise generator for producing stationary noise signal. It significantly improves subjective quality of decoded signal under various background noise conditions. Subjective listening tests are conducted in accordance with ACR and DCR tests. The ACR test results indicate that the fundamental performance of the MDP-CELP is equivalent to that of 32-kbit/s adaptive differential pulse code modulation (ADPCM). The DCR test results show that the performance of the MDP-CELP is equivalent to or better than that of 8-kbit/s conjugate-structure algebraic code excited linear prediction (CS-ACELP) under several background noise conditions.},
keywords={},
doi={},
ISSN={},
month={February},}
Salinan
TY - JOUR
TI - 4-kbit/s Multi-Dispersed-Pulse-Based CELP (MDP-CELP) Speech Coder
T2 - IEICE TRANSACTIONS on Information
SP - 392
EP - 401
AU - Hiroyuki EHARA
AU - Koji YOSHIDA
AU - Kazutoshi YASUNAGA
AU - Toshiyuki MORII
PY - 2002
DO -
JO - IEICE TRANSACTIONS on Information
SN -
VL - E85-D
IS - 2
JA - IEICE TRANSACTIONS on Information
Y1 - February 2002
AB - This paper presents a high quality 4-kbit/s speech coding algorithm based on a CELP algorithm. The coder operates on speech frames of 20 ms. The algorithm has following four main features: multiple sub-codebooks, backward adaptive mode switching, dispersed-pulse structure, and noise post-processing. The multiple sub-codebooks consist of a pulse-codebook and a random-codebook so that they can handle both signals, noise-like (e.g. unvoiced, stationary noise) and pulse-like (e.g. voiced). The backward adaptive mode switching is performed using decoded parameters; therefore, no additional mode bit is transmitted. The random-codebook size is switched with the backward adaptively selected mode. The subjective quality of unvoiced speech or noise-like signal can be improved by this switching operation because the random-codebook size is greatly increased in such signal mode. The dispersed-pulse structure provides better performance of sparse pulse excitation using dispersed pulses instead of simple unit pulses. The noise post-processing employs a stationary background noise generator for producing stationary noise signal. It significantly improves subjective quality of decoded signal under various background noise conditions. Subjective listening tests are conducted in accordance with ACR and DCR tests. The ACR test results indicate that the fundamental performance of the MDP-CELP is equivalent to that of 32-kbit/s adaptive differential pulse code modulation (ADPCM). The DCR test results show that the performance of the MDP-CELP is equivalent to or better than that of 8-kbit/s conjugate-structure algebraic code excited linear prediction (CS-ACELP) under several background noise conditions.
ER -