The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. ex. Some numerals are expressed as "XNUMX".
Copyrights notice
The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. Copyrights notice
Makalah ini memperkenalkan pemodelan kebarangkalian kelewatan pemerhatian penggera, dan menunjukkan kaedah baru diagnosis berasaskan model untuk pemerhatian siri masa. Pertama, model kerosakan ditakrifkan dengan mengaitkan pokok peristiwa yang berakar umbi oleh setiap hipotesis kerosakan dengan pembolehubah kebarangkalian yang mewakili kelewatan sementara. Hipotesis yang paling berkemungkinan diperoleh dengan memilih satu yang kriteria maklumat Akaike (AIC) adalah minimum. Ia dibuktikan dengan simulasi bahawa pemilihan hipotesis berasaskan AIC mencapai ketepatan tinggi dalam diagnosis.
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Salinan
Kazuo HASHIMOTO, Kazunori MATSUMOTO, Norio SHIRATORI, "A New Diagnostic Method Using Probabilistic Temporal Fault Models" in IEICE TRANSACTIONS on Information,
vol. E85-D, no. 3, pp. 444-454, March 2002, doi: .
Abstract: This paper introduces a probabilistic modeling of alarm observation delay, and shows a novel method of model-based diagnosis for time series observation. First, a fault model is defined by associating an event tree rooted by each fault hypothesis with probabilistic variables representing temporal delay. The most probable hypothesis is obtained by selecting one whose Akaike information criterion (AIC) is minimal. It is proved by simulation that the AIC-based hypothesis selection achieves a high precision in diagnosis.
URL: https://global.ieice.org/en_transactions/information/10.1587/e85-d_3_444/_p
Salinan
@ARTICLE{e85-d_3_444,
author={Kazuo HASHIMOTO, Kazunori MATSUMOTO, Norio SHIRATORI, },
journal={IEICE TRANSACTIONS on Information},
title={A New Diagnostic Method Using Probabilistic Temporal Fault Models},
year={2002},
volume={E85-D},
number={3},
pages={444-454},
abstract={This paper introduces a probabilistic modeling of alarm observation delay, and shows a novel method of model-based diagnosis for time series observation. First, a fault model is defined by associating an event tree rooted by each fault hypothesis with probabilistic variables representing temporal delay. The most probable hypothesis is obtained by selecting one whose Akaike information criterion (AIC) is minimal. It is proved by simulation that the AIC-based hypothesis selection achieves a high precision in diagnosis.},
keywords={},
doi={},
ISSN={},
month={March},}
Salinan
TY - JOUR
TI - A New Diagnostic Method Using Probabilistic Temporal Fault Models
T2 - IEICE TRANSACTIONS on Information
SP - 444
EP - 454
AU - Kazuo HASHIMOTO
AU - Kazunori MATSUMOTO
AU - Norio SHIRATORI
PY - 2002
DO -
JO - IEICE TRANSACTIONS on Information
SN -
VL - E85-D
IS - 3
JA - IEICE TRANSACTIONS on Information
Y1 - March 2002
AB - This paper introduces a probabilistic modeling of alarm observation delay, and shows a novel method of model-based diagnosis for time series observation. First, a fault model is defined by associating an event tree rooted by each fault hypothesis with probabilistic variables representing temporal delay. The most probable hypothesis is obtained by selecting one whose Akaike information criterion (AIC) is minimal. It is proved by simulation that the AIC-based hypothesis selection achieves a high precision in diagnosis.
ER -