The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. ex. Some numerals are expressed as "XNUMX".
Copyrights notice
The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. Copyrights notice
Kaedah kecerunan konjugat Dai-Yuan (DY) ialah kaedah yang berkesan untuk menyelesaikan masalah pengoptimuman tanpa kekangan berskala besar. Dalam kertas ini, kaedah DY baharu, yang mempunyai parameter konjugat spektrum βk, dibentangkan. Sifat menarik bagi kaedah yang dicadangkan ialah arah carian yang dijana pada setiap lelaran adalah keturunan, yang tidak bergantung pada carian baris. Konvergensi global kaedah yang dicadangkan juga diwujudkan apabila keadaan Wolfe yang kuat digunakan. Akhir sekali, eksperimen perbandingan mengenai penyingkiran hingar impuls dilaporkan untuk menunjukkan keberkesanan kaedah yang dicadangkan.
Wei XUE
Anhui University of Technology
Junhong REN
Chinese Academy of Sciences
Xiao ZHENG
Anhui University of Technology
Zhi LIU
Shizuoka University
Yueyong LIANG
PHIMA Intelligence Technology Co., Ltd.
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Salinan
Wei XUE, Junhong REN, Xiao ZHENG, Zhi LIU, Yueyong LIANG, "A New DY Conjugate Gradient Method and Applications to Image Denoising" in IEICE TRANSACTIONS on Information,
vol. E101-D, no. 12, pp. 2984-2990, December 2018, doi: 10.1587/transinf.2018EDP7210.
Abstract: Dai-Yuan (DY) conjugate gradient method is an effective method for solving large-scale unconstrained optimization problems. In this paper, a new DY method, possessing a spectral conjugate parameter βk, is presented. An attractive property of the proposed method is that the search direction generated at each iteration is descent, which is independent of the line search. Global convergence of the proposed method is also established when strong Wolfe conditions are employed. Finally, comparison experiments on impulse noise removal are reported to demonstrate the effectiveness of the proposed method.
URL: https://global.ieice.org/en_transactions/information/10.1587/transinf.2018EDP7210/_p
Salinan
@ARTICLE{e101-d_12_2984,
author={Wei XUE, Junhong REN, Xiao ZHENG, Zhi LIU, Yueyong LIANG, },
journal={IEICE TRANSACTIONS on Information},
title={A New DY Conjugate Gradient Method and Applications to Image Denoising},
year={2018},
volume={E101-D},
number={12},
pages={2984-2990},
abstract={Dai-Yuan (DY) conjugate gradient method is an effective method for solving large-scale unconstrained optimization problems. In this paper, a new DY method, possessing a spectral conjugate parameter βk, is presented. An attractive property of the proposed method is that the search direction generated at each iteration is descent, which is independent of the line search. Global convergence of the proposed method is also established when strong Wolfe conditions are employed. Finally, comparison experiments on impulse noise removal are reported to demonstrate the effectiveness of the proposed method.},
keywords={},
doi={10.1587/transinf.2018EDP7210},
ISSN={1745-1361},
month={December},}
Salinan
TY - JOUR
TI - A New DY Conjugate Gradient Method and Applications to Image Denoising
T2 - IEICE TRANSACTIONS on Information
SP - 2984
EP - 2990
AU - Wei XUE
AU - Junhong REN
AU - Xiao ZHENG
AU - Zhi LIU
AU - Yueyong LIANG
PY - 2018
DO - 10.1587/transinf.2018EDP7210
JO - IEICE TRANSACTIONS on Information
SN - 1745-1361
VL - E101-D
IS - 12
JA - IEICE TRANSACTIONS on Information
Y1 - December 2018
AB - Dai-Yuan (DY) conjugate gradient method is an effective method for solving large-scale unconstrained optimization problems. In this paper, a new DY method, possessing a spectral conjugate parameter βk, is presented. An attractive property of the proposed method is that the search direction generated at each iteration is descent, which is independent of the line search. Global convergence of the proposed method is also established when strong Wolfe conditions are employed. Finally, comparison experiments on impulse noise removal are reported to demonstrate the effectiveness of the proposed method.
ER -