The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. ex. Some numerals are expressed as "XNUMX".
Copyrights notice
The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. Copyrights notice
Apabila bilangan teras pada pemproses bertambah, hierarki cache mengandungi lebih banyak tahap cache dan cache tahap terakhir (LLC) yang lebih besar. Oleh itu, kuasa dan penggunaan tenaga hierarki cache menjadi tidak boleh diabaikan. Sementara itu, kerana gelagat penggunaan cache bagi aplikasi individu boleh berbeza, adalah mungkin untuk mencapai kecekapan tenaga yang lebih tinggi bagi sistem pengkomputeran dengan menentukan konfigurasi cache yang sesuai untuk aplikasi individu. Makalah ini mencadangkan mekanisme kawalan cache untuk meningkatkan kecekapan tenaga dengan melaraskan hierarki cache untuk setiap aplikasi. Mekanisme kami mula-mula memintas dan melumpuhkan tahap cache yang kurang ketara, kemudian melumpuhkan sebahagian LLC, dan akhirnya melaraskan persekutuan jika ia mengalami sejumlah besar kehilangan konflik. Mekanisme ini boleh mencapai penjimatan tenaga yang ketara dengan mengorbankan kemerosotan prestasi kecil. Keputusan penilaian menunjukkan bahawa mekanisme kami meningkatkan kecekapan tenaga sebanyak 23.9% dan 7.0% secara purata ke atas garis dasar dan mekanisme pintasan peringkat cache, masing-masing. Di samping itu, walaupun pertikaian sumber LLC berlaku, mekanisme yang dicadangkan masih berkesan untuk meningkatkan kecekapan tenaga.
Jiaheng LIU
Tohoku University
Ryusuke EGAWA
Tokyo Denki University
Hiroyuki TAKIZAWA
Tohoku University
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Salinan
Jiaheng LIU, Ryusuke EGAWA, Hiroyuki TAKIZAWA, "A Conflict-Aware Capacity Control Mechanism for Deep Cache Hierarchy" in IEICE TRANSACTIONS on Information,
vol. E105-D, no. 6, pp. 1150-1163, June 2022, doi: 10.1587/transinf.2021EDP7201.
Abstract: As the number of cores on a processor increases, cache hierarchies contain more cache levels and a larger last level cache (LLC). Thus, the power and energy consumption of the cache hierarchy becomes non-negligible. Meanwhile, because the cache usage behaviors of individual applications can be different, it is possible to achieve higher energy efficiency of the computing system by determining the appropriate cache configurations for individual applications. This paper proposes a cache control mechanism to improve energy efficiency by adjusting a cache hierarchy to each application. Our mechanism first bypasses and disables a less-significant cache level, then partially disables the LLC, and finally adjusts the associativity if it suffers from a large number of conflict misses. The mechanism can achieve significant energy saving at the sacrifice of small performance degradation. The evaluation results show that our mechanism improves energy efficiency by 23.9% and 7.0% on average over the baseline and the cache-level bypassing mechanisms, respectively. In addition, even if the LLC resource contention occurs, the proposed mechanism is still effective for improving energy efficiency.
URL: https://global.ieice.org/en_transactions/information/10.1587/transinf.2021EDP7201/_p
Salinan
@ARTICLE{e105-d_6_1150,
author={Jiaheng LIU, Ryusuke EGAWA, Hiroyuki TAKIZAWA, },
journal={IEICE TRANSACTIONS on Information},
title={A Conflict-Aware Capacity Control Mechanism for Deep Cache Hierarchy},
year={2022},
volume={E105-D},
number={6},
pages={1150-1163},
abstract={As the number of cores on a processor increases, cache hierarchies contain more cache levels and a larger last level cache (LLC). Thus, the power and energy consumption of the cache hierarchy becomes non-negligible. Meanwhile, because the cache usage behaviors of individual applications can be different, it is possible to achieve higher energy efficiency of the computing system by determining the appropriate cache configurations for individual applications. This paper proposes a cache control mechanism to improve energy efficiency by adjusting a cache hierarchy to each application. Our mechanism first bypasses and disables a less-significant cache level, then partially disables the LLC, and finally adjusts the associativity if it suffers from a large number of conflict misses. The mechanism can achieve significant energy saving at the sacrifice of small performance degradation. The evaluation results show that our mechanism improves energy efficiency by 23.9% and 7.0% on average over the baseline and the cache-level bypassing mechanisms, respectively. In addition, even if the LLC resource contention occurs, the proposed mechanism is still effective for improving energy efficiency.},
keywords={},
doi={10.1587/transinf.2021EDP7201},
ISSN={1745-1361},
month={June},}
Salinan
TY - JOUR
TI - A Conflict-Aware Capacity Control Mechanism for Deep Cache Hierarchy
T2 - IEICE TRANSACTIONS on Information
SP - 1150
EP - 1163
AU - Jiaheng LIU
AU - Ryusuke EGAWA
AU - Hiroyuki TAKIZAWA
PY - 2022
DO - 10.1587/transinf.2021EDP7201
JO - IEICE TRANSACTIONS on Information
SN - 1745-1361
VL - E105-D
IS - 6
JA - IEICE TRANSACTIONS on Information
Y1 - June 2022
AB - As the number of cores on a processor increases, cache hierarchies contain more cache levels and a larger last level cache (LLC). Thus, the power and energy consumption of the cache hierarchy becomes non-negligible. Meanwhile, because the cache usage behaviors of individual applications can be different, it is possible to achieve higher energy efficiency of the computing system by determining the appropriate cache configurations for individual applications. This paper proposes a cache control mechanism to improve energy efficiency by adjusting a cache hierarchy to each application. Our mechanism first bypasses and disables a less-significant cache level, then partially disables the LLC, and finally adjusts the associativity if it suffers from a large number of conflict misses. The mechanism can achieve significant energy saving at the sacrifice of small performance degradation. The evaluation results show that our mechanism improves energy efficiency by 23.9% and 7.0% on average over the baseline and the cache-level bypassing mechanisms, respectively. In addition, even if the LLC resource contention occurs, the proposed mechanism is still effective for improving energy efficiency.
ER -