The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. ex. Some numerals are expressed as "XNUMX".
Copyrights notice
The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. Copyrights notice
Dalam kajian ini, kami membentangkan algoritma ubah bentuk gaya sfera untuk digunakan pada model komponen tunggal yang boleh mengubah bentuk model dengan gaya sfera, sambil mengekalkan butiran tempatan model asal. Oleh kerana model 3D mempunyai struktur rangka kompleks yang terdiri daripada banyak komponen, ubah bentuk di sekeliling sambungan antara setiap komponen tunggal adalah rumit, terutamanya menghalang persilangan diri mesh. Untuk pengetahuan kami yang terbaik, bukan sahaja terdapat kaedah untuk mencapai gaya sfera dalam model 3D yang terdiri daripada berbilang komponen tetapi juga kaedah yang sesuai untuk satu komponen. Dalam kajian ini, kami memberi tumpuan kepada ubah bentuk gaya sfera bagi model komponen tunggal. Sehubungan itu, kami mencadangkan kaedah ubah bentuk yang mengubah model input dengan gaya sfera, sambil mengekalkan butiran tempatan model input. Secara khusus, kami mentakrifkan fungsi tenaga yang menggabungkan kaedah as-rigid-as-possible (ARAP) dan ciri sfera. Istilah sfera ditakrifkan sebagai l2-penyaturan pada ciri linear; sewajarnya, pengoptimuman yang sepadan boleh diselesaikan dengan cekap. Kami juga memerhatikan bahawa hasil ubah bentuk kami adalah bergantung kepada kualiti jaringan input. Sebagai contoh, apabila jaringan input terdiri daripada banyak segi tiga tumpul, kaedah ubah bentuk gaya sfera gagal. Untuk menangani masalah ini, kami mencadangkan kaedah ubah bentuk pilihan berdasarkan model proksi badan cembung sebagai kaedah ubah bentuk pelengkap. Kaedah proksi kami membina model proksi model input dan menggunakan kaedah ubah bentuk kami pada model proksi untuk mengubah bentuk model input melalui unjuran dan interpolasi. Kami telah menggunakan kaedah yang dicadangkan kepada bentuk yang ringkas dan kompleks, membandingkan hasil percubaan kami dengan kaedah penggayaan geometri 3D analogi bentuk sfera dipacu normal, dan mengesahkan bahawa kaedah kami berjaya mengubah bentuk model yang licin, bulat dan melengkung. Kami juga membincangkan had dan masalah algoritma kami berdasarkan keputusan percubaan.
Xuemei FENG
Iwate University
Qing FANG
University of Science and Technology of China
Kouichi KONNO
Iwate University
Zhiyi ZHANG
Northwest A&F University
Katsutsugu MATSUYAMA
Iwate University
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Salinan
Xuemei FENG, Qing FANG, Kouichi KONNO, Zhiyi ZHANG, Katsutsugu MATSUYAMA, "Spherical Style Deformation on Single Component Models" in IEICE TRANSACTIONS on Information,
vol. E106-D, no. 11, pp. 1891-1905, November 2023, doi: 10.1587/transinf.2023EDP7112.
Abstract: In this study, we present a spherical style deformation algorithm to be applied on single component models that can deform the models with spherical style, while preserving the local details of the original models. Because 3D models have complex skeleton structures that consist of many components, the deformation around connections between each single component is complicated, especially preventing mesh self-intersections. To the best of our knowledge, there does not exist not only methods to achieve a spherical style in a 3D model consisting of multiple components but also methods suited to a single component. In this study, we focus on spherical style deformation of single component models. Accordingly, we propose a deformation method that transforms the input model with the spherical style, while preserving the local details of the input model. Specifically, we define an energy function that combines the as-rigid-as-possible (ARAP) method and spherical features. The spherical term is defined as l2-regularization on a linear feature; accordingly, the corresponding optimization can be solved efficiently. We also observed that the results of our deformation are dependent on the quality of the input mesh. For instance, when the input mesh consists of many obtuse triangles, the spherical style deformation method fails. To address this problem, we propose an optional deformation method based on convex hull proxy model as the complementary deformation method. Our proxy method constructs a proxy model of the input model and applies our deformation method to the proxy model to deform the input model by projection and interpolation. We have applied our proposed method to simple and complex shapes, compared our experimental results with the 3D geometric stylization method of normal-driven spherical shape analogies, and confirmed that our method successfully deforms models that are smooth, round, and curved. We also discuss the limitations and problems of our algorithm based on the experimental results.
URL: https://global.ieice.org/en_transactions/information/10.1587/transinf.2023EDP7112/_p
Salinan
@ARTICLE{e106-d_11_1891,
author={Xuemei FENG, Qing FANG, Kouichi KONNO, Zhiyi ZHANG, Katsutsugu MATSUYAMA, },
journal={IEICE TRANSACTIONS on Information},
title={Spherical Style Deformation on Single Component Models},
year={2023},
volume={E106-D},
number={11},
pages={1891-1905},
abstract={In this study, we present a spherical style deformation algorithm to be applied on single component models that can deform the models with spherical style, while preserving the local details of the original models. Because 3D models have complex skeleton structures that consist of many components, the deformation around connections between each single component is complicated, especially preventing mesh self-intersections. To the best of our knowledge, there does not exist not only methods to achieve a spherical style in a 3D model consisting of multiple components but also methods suited to a single component. In this study, we focus on spherical style deformation of single component models. Accordingly, we propose a deformation method that transforms the input model with the spherical style, while preserving the local details of the input model. Specifically, we define an energy function that combines the as-rigid-as-possible (ARAP) method and spherical features. The spherical term is defined as l2-regularization on a linear feature; accordingly, the corresponding optimization can be solved efficiently. We also observed that the results of our deformation are dependent on the quality of the input mesh. For instance, when the input mesh consists of many obtuse triangles, the spherical style deformation method fails. To address this problem, we propose an optional deformation method based on convex hull proxy model as the complementary deformation method. Our proxy method constructs a proxy model of the input model and applies our deformation method to the proxy model to deform the input model by projection and interpolation. We have applied our proposed method to simple and complex shapes, compared our experimental results with the 3D geometric stylization method of normal-driven spherical shape analogies, and confirmed that our method successfully deforms models that are smooth, round, and curved. We also discuss the limitations and problems of our algorithm based on the experimental results.},
keywords={},
doi={10.1587/transinf.2023EDP7112},
ISSN={1745-1361},
month={November},}
Salinan
TY - JOUR
TI - Spherical Style Deformation on Single Component Models
T2 - IEICE TRANSACTIONS on Information
SP - 1891
EP - 1905
AU - Xuemei FENG
AU - Qing FANG
AU - Kouichi KONNO
AU - Zhiyi ZHANG
AU - Katsutsugu MATSUYAMA
PY - 2023
DO - 10.1587/transinf.2023EDP7112
JO - IEICE TRANSACTIONS on Information
SN - 1745-1361
VL - E106-D
IS - 11
JA - IEICE TRANSACTIONS on Information
Y1 - November 2023
AB - In this study, we present a spherical style deformation algorithm to be applied on single component models that can deform the models with spherical style, while preserving the local details of the original models. Because 3D models have complex skeleton structures that consist of many components, the deformation around connections between each single component is complicated, especially preventing mesh self-intersections. To the best of our knowledge, there does not exist not only methods to achieve a spherical style in a 3D model consisting of multiple components but also methods suited to a single component. In this study, we focus on spherical style deformation of single component models. Accordingly, we propose a deformation method that transforms the input model with the spherical style, while preserving the local details of the input model. Specifically, we define an energy function that combines the as-rigid-as-possible (ARAP) method and spherical features. The spherical term is defined as l2-regularization on a linear feature; accordingly, the corresponding optimization can be solved efficiently. We also observed that the results of our deformation are dependent on the quality of the input mesh. For instance, when the input mesh consists of many obtuse triangles, the spherical style deformation method fails. To address this problem, we propose an optional deformation method based on convex hull proxy model as the complementary deformation method. Our proxy method constructs a proxy model of the input model and applies our deformation method to the proxy model to deform the input model by projection and interpolation. We have applied our proposed method to simple and complex shapes, compared our experimental results with the 3D geometric stylization method of normal-driven spherical shape analogies, and confirmed that our method successfully deforms models that are smooth, round, and curved. We also discuss the limitations and problems of our algorithm based on the experimental results.
ER -