The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. ex. Some numerals are expressed as "XNUMX".
Copyrights notice
The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. Copyrights notice
Disebabkan oleh pembangunan dan popularisasi televisyen definisi tinggi, kamera video digital, cakera Blu-ray, penyiaran digital, televisyen IP dan sebagainya, ia memainkan peranan penting untuk mengenal pasti dan mengukur kemerosotan kualiti video. Dalam kertas kerja ini, kami mencadangkan SV-CIELAB yang merupakan kaedah penilaian kualiti video objektif (VQA) menggunakan fungsi kepekaan kontras halaju-spatio (SV-CSF). Dalam SV-CIELAB, maklumat gerakan dalam video digunakan dengan berkesan untuk menapis maklumat yang tidak diperlukan dalam domain frekuensi spatial. Sebagai penapis untuk menggunakan video, kami menggunakan SV-CSF. Ia adalah fungsi pemindahan modulasi sistem visual manusia, dan terdiri daripada hubungan antara kepekaan kontras, frekuensi spatial dan halaju rangsangan yang dirasakan. Dalam proses penapisan, SV-CSF tidak boleh digunakan secara langsung dalam domain frekuensi spatial kerana maklumat koordinat spatial diperlukan apabila menggunakan maklumat halaju. Untuk penapisan oleh SV-CSF, kami memperoleh bingkai video yang diasingkan dalam domain frekuensi spatial. Dengan menggunakan maklumat halaju, bingkai yang dipisahkan dengan frekuensi spatial terhad ditimbang dengan sensitiviti kontras dalam model SV-CSF. Dalam SV-CIELAB, kriteria diperoleh dengan mengira perbezaan imej antara video asal yang ditapis dan diherotkan. Untuk pengesahan SV-CIELAB, eksperimen penilaian subjektif telah dijalankan. Keputusan eksperimen subjektif dibandingkan dengan SV-CIELAB dan kaedah VQA konvensional seperti perbezaan warna CIELAB, Spatial-CIELAB, nisbah isyarat kepada bunyi dan sebagainya. Daripada keputusan eksperimen, menunjukkan bahawa SV-CIELAB adalah kaedah VQA yang lebih cekap berbanding kaedah konvensional.
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Salinan
Keita HIRAI, Jambal TUMURTOGOO, Ayano KIKUCHI, Norimichi TSUMURA, Toshiya NAKAGUCHI, Yoichi MIYAKE, "Video Quality Assessment Using Spatio-Velocity Contrast Sensitivity Function" in IEICE TRANSACTIONS on Information,
vol. E93-D, no. 5, pp. 1253-1262, May 2010, doi: 10.1587/transinf.E93.D.1253.
Abstract: Due to the development and popularization of high-definition televisions, digital video cameras, Blu-ray discs, digital broadcasting, IP television and so on, it plays an important role to identify and quantify video quality degradations. In this paper, we propose SV-CIELAB which is an objective video quality assessment (VQA) method using a spatio-velocity contrast sensitivity function (SV-CSF). In SV-CIELAB, motion information in videos is effectively utilized for filtering unnecessary information in the spatial frequency domain. As the filter to apply videos, we used the SV-CSF. It is a modulation transfer function of the human visual system, and consists of the relationship among contrast sensitivities, spatial frequencies and velocities of perceived stimuli. In the filtering process, the SV-CSF cannot be directly applied in the spatial frequency domain because spatial coordinate information is required when using velocity information. For filtering by the SV-CSF, we obtain video frames separated in spatial frequency domain. By using velocity information, the separated frames with limited spatial frequencies are weighted by contrast sensitivities in the SV-CSF model. In SV-CIELAB, the criteria are obtained by calculating image differences between filtered original and distorted videos. For the validation of SV-CIELAB, subjective evaluation experiments were conducted. The subjective experimental results were compared with SV-CIELAB and the conventional VQA methods such as CIELAB color difference, Spatial-CIELAB, signal to noise ratio and so on. From the experimental results, it was shown that SV-CIELAB is a more efficient VQA method than the conventional methods.
URL: https://global.ieice.org/en_transactions/information/10.1587/transinf.E93.D.1253/_p
Salinan
@ARTICLE{e93-d_5_1253,
author={Keita HIRAI, Jambal TUMURTOGOO, Ayano KIKUCHI, Norimichi TSUMURA, Toshiya NAKAGUCHI, Yoichi MIYAKE, },
journal={IEICE TRANSACTIONS on Information},
title={Video Quality Assessment Using Spatio-Velocity Contrast Sensitivity Function},
year={2010},
volume={E93-D},
number={5},
pages={1253-1262},
abstract={Due to the development and popularization of high-definition televisions, digital video cameras, Blu-ray discs, digital broadcasting, IP television and so on, it plays an important role to identify and quantify video quality degradations. In this paper, we propose SV-CIELAB which is an objective video quality assessment (VQA) method using a spatio-velocity contrast sensitivity function (SV-CSF). In SV-CIELAB, motion information in videos is effectively utilized for filtering unnecessary information in the spatial frequency domain. As the filter to apply videos, we used the SV-CSF. It is a modulation transfer function of the human visual system, and consists of the relationship among contrast sensitivities, spatial frequencies and velocities of perceived stimuli. In the filtering process, the SV-CSF cannot be directly applied in the spatial frequency domain because spatial coordinate information is required when using velocity information. For filtering by the SV-CSF, we obtain video frames separated in spatial frequency domain. By using velocity information, the separated frames with limited spatial frequencies are weighted by contrast sensitivities in the SV-CSF model. In SV-CIELAB, the criteria are obtained by calculating image differences between filtered original and distorted videos. For the validation of SV-CIELAB, subjective evaluation experiments were conducted. The subjective experimental results were compared with SV-CIELAB and the conventional VQA methods such as CIELAB color difference, Spatial-CIELAB, signal to noise ratio and so on. From the experimental results, it was shown that SV-CIELAB is a more efficient VQA method than the conventional methods.},
keywords={},
doi={10.1587/transinf.E93.D.1253},
ISSN={1745-1361},
month={May},}
Salinan
TY - JOUR
TI - Video Quality Assessment Using Spatio-Velocity Contrast Sensitivity Function
T2 - IEICE TRANSACTIONS on Information
SP - 1253
EP - 1262
AU - Keita HIRAI
AU - Jambal TUMURTOGOO
AU - Ayano KIKUCHI
AU - Norimichi TSUMURA
AU - Toshiya NAKAGUCHI
AU - Yoichi MIYAKE
PY - 2010
DO - 10.1587/transinf.E93.D.1253
JO - IEICE TRANSACTIONS on Information
SN - 1745-1361
VL - E93-D
IS - 5
JA - IEICE TRANSACTIONS on Information
Y1 - May 2010
AB - Due to the development and popularization of high-definition televisions, digital video cameras, Blu-ray discs, digital broadcasting, IP television and so on, it plays an important role to identify and quantify video quality degradations. In this paper, we propose SV-CIELAB which is an objective video quality assessment (VQA) method using a spatio-velocity contrast sensitivity function (SV-CSF). In SV-CIELAB, motion information in videos is effectively utilized for filtering unnecessary information in the spatial frequency domain. As the filter to apply videos, we used the SV-CSF. It is a modulation transfer function of the human visual system, and consists of the relationship among contrast sensitivities, spatial frequencies and velocities of perceived stimuli. In the filtering process, the SV-CSF cannot be directly applied in the spatial frequency domain because spatial coordinate information is required when using velocity information. For filtering by the SV-CSF, we obtain video frames separated in spatial frequency domain. By using velocity information, the separated frames with limited spatial frequencies are weighted by contrast sensitivities in the SV-CSF model. In SV-CIELAB, the criteria are obtained by calculating image differences between filtered original and distorted videos. For the validation of SV-CIELAB, subjective evaluation experiments were conducted. The subjective experimental results were compared with SV-CIELAB and the conventional VQA methods such as CIELAB color difference, Spatial-CIELAB, signal to noise ratio and so on. From the experimental results, it was shown that SV-CIELAB is a more efficient VQA method than the conventional methods.
ER -