The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. ex. Some numerals are expressed as "XNUMX".
Copyrights notice
The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. Copyrights notice
Menganggar nisbah dua fungsi ketumpatan kebarangkalian (aka kepentingan) baru-baru ini telah mengumpulkan banyak perhatian kerana penganggar kepentingan boleh digunakan untuk menyelesaikan pelbagai pembelajaran mesin dan masalah perlombongan data. Dalam kertas ini, kami mencadangkan kaedah anggaran kepentingan baharu menggunakan a campuran penganalisis komponen utama kebarangkalian. Kaedah yang dicadangkan adalah lebih fleksibel daripada pendekatan sedia ada, dan dijangka berfungsi dengan baik apabila fungsi kepentingan sasaran dikaitkan dan kekurangan pangkat. Melalui eksperimen, kami menggambarkan kesahihan pendekatan yang dicadangkan.
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Salinan
Makoto YAMADA, Masashi SUGIYAMA, Gordon WICHERN, Jaak SIMM, "Direct Importance Estimation with a Mixture of Probabilistic Principal Component Analyzers" in IEICE TRANSACTIONS on Information,
vol. E93-D, no. 10, pp. 2846-2849, October 2010, doi: 10.1587/transinf.E93.D.2846.
Abstract: Estimating the ratio of two probability density functions (a.k.a. the importance) has recently gathered a great deal of attention since importance estimators can be used for solving various machine learning and data mining problems. In this paper, we propose a new importance estimation method using a mixture of probabilistic principal component analyzers. The proposed method is more flexible than existing approaches, and is expected to work well when the target importance function is correlated and rank-deficient. Through experiments, we illustrate the validity of the proposed approach.
URL: https://global.ieice.org/en_transactions/information/10.1587/transinf.E93.D.2846/_p
Salinan
@ARTICLE{e93-d_10_2846,
author={Makoto YAMADA, Masashi SUGIYAMA, Gordon WICHERN, Jaak SIMM, },
journal={IEICE TRANSACTIONS on Information},
title={Direct Importance Estimation with a Mixture of Probabilistic Principal Component Analyzers},
year={2010},
volume={E93-D},
number={10},
pages={2846-2849},
abstract={Estimating the ratio of two probability density functions (a.k.a. the importance) has recently gathered a great deal of attention since importance estimators can be used for solving various machine learning and data mining problems. In this paper, we propose a new importance estimation method using a mixture of probabilistic principal component analyzers. The proposed method is more flexible than existing approaches, and is expected to work well when the target importance function is correlated and rank-deficient. Through experiments, we illustrate the validity of the proposed approach.},
keywords={},
doi={10.1587/transinf.E93.D.2846},
ISSN={1745-1361},
month={October},}
Salinan
TY - JOUR
TI - Direct Importance Estimation with a Mixture of Probabilistic Principal Component Analyzers
T2 - IEICE TRANSACTIONS on Information
SP - 2846
EP - 2849
AU - Makoto YAMADA
AU - Masashi SUGIYAMA
AU - Gordon WICHERN
AU - Jaak SIMM
PY - 2010
DO - 10.1587/transinf.E93.D.2846
JO - IEICE TRANSACTIONS on Information
SN - 1745-1361
VL - E93-D
IS - 10
JA - IEICE TRANSACTIONS on Information
Y1 - October 2010
AB - Estimating the ratio of two probability density functions (a.k.a. the importance) has recently gathered a great deal of attention since importance estimators can be used for solving various machine learning and data mining problems. In this paper, we propose a new importance estimation method using a mixture of probabilistic principal component analyzers. The proposed method is more flexible than existing approaches, and is expected to work well when the target importance function is correlated and rank-deficient. Through experiments, we illustrate the validity of the proposed approach.
ER -