The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. ex. Some numerals are expressed as "XNUMX".
Copyrights notice
The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. Copyrights notice
Matlamat kerja ini adalah untuk membangunkan teknik pembahagian imej perubatan yang cekap dengan memasang model bentuk tak linear dengan imej pra-segmen. Dalam teknik ini, analisis komponen prinsip kernel (KPCA) digunakan untuk menangkap variasi bentuk dan untuk membina model bentuk tak linear. Pra-segmentasi dijalankan dengan mengklasifikasikan piksel imej mengikut ciri tekstur aras tinggi yang diekstrak menggunakan penguraian paket wavelet yang lebih lengkap. Selain itu, pemasangan model dilengkapkan menggunakan teknik pengoptimuman kawanan zarah (PSO) untuk menyesuaikan parameter model. Teknik yang dicadangkan adalah automatik sepenuhnya, berbakat untuk menangani variasi bentuk yang kompleks, boleh mengoptimumkan model dengan cekap agar sesuai dengan kes baharu, dan teguh kepada hingar dan oklusi. Dalam makalah ini, kami menunjukkan teknik yang dicadangkan dengan melaksanakannya kepada segmentasi hati daripada imbasan tomografi berkomputer (CT) dan keputusan yang diperolehi sangat diharapkan.
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Salinan
Ahmed AFIFI, Toshiya NAKAGUCHI, Norimichi TSUMURA, Yoichi MIYAKE, "A Model Optimization Approach to the Automatic Segmentation of Medical Images" in IEICE TRANSACTIONS on Information,
vol. E93-D, no. 4, pp. 882-890, April 2010, doi: 10.1587/transinf.E93.D.882.
Abstract: The aim of this work is to develop an efficient medical image segmentation technique by fitting a nonlinear shape model with pre-segmented images. In this technique, the kernel principle component analysis (KPCA) is used to capture the shape variations and to build the nonlinear shape model. The pre-segmentation is carried out by classifying the image pixels according to the high level texture features extracted using the over-complete wavelet packet decomposition. Additionally, the model fitting is completed using the particle swarm optimization technique (PSO) to adapt the model parameters. The proposed technique is fully automated, is talented to deal with complex shape variations, can efficiently optimize the model to fit the new cases, and is robust to noise and occlusion. In this paper, we demonstrate the proposed technique by implementing it to the liver segmentation from computed tomography (CT) scans and the obtained results are very hopeful.
URL: https://global.ieice.org/en_transactions/information/10.1587/transinf.E93.D.882/_p
Salinan
@ARTICLE{e93-d_4_882,
author={Ahmed AFIFI, Toshiya NAKAGUCHI, Norimichi TSUMURA, Yoichi MIYAKE, },
journal={IEICE TRANSACTIONS on Information},
title={A Model Optimization Approach to the Automatic Segmentation of Medical Images},
year={2010},
volume={E93-D},
number={4},
pages={882-890},
abstract={The aim of this work is to develop an efficient medical image segmentation technique by fitting a nonlinear shape model with pre-segmented images. In this technique, the kernel principle component analysis (KPCA) is used to capture the shape variations and to build the nonlinear shape model. The pre-segmentation is carried out by classifying the image pixels according to the high level texture features extracted using the over-complete wavelet packet decomposition. Additionally, the model fitting is completed using the particle swarm optimization technique (PSO) to adapt the model parameters. The proposed technique is fully automated, is talented to deal with complex shape variations, can efficiently optimize the model to fit the new cases, and is robust to noise and occlusion. In this paper, we demonstrate the proposed technique by implementing it to the liver segmentation from computed tomography (CT) scans and the obtained results are very hopeful.},
keywords={},
doi={10.1587/transinf.E93.D.882},
ISSN={1745-1361},
month={April},}
Salinan
TY - JOUR
TI - A Model Optimization Approach to the Automatic Segmentation of Medical Images
T2 - IEICE TRANSACTIONS on Information
SP - 882
EP - 890
AU - Ahmed AFIFI
AU - Toshiya NAKAGUCHI
AU - Norimichi TSUMURA
AU - Yoichi MIYAKE
PY - 2010
DO - 10.1587/transinf.E93.D.882
JO - IEICE TRANSACTIONS on Information
SN - 1745-1361
VL - E93-D
IS - 4
JA - IEICE TRANSACTIONS on Information
Y1 - April 2010
AB - The aim of this work is to develop an efficient medical image segmentation technique by fitting a nonlinear shape model with pre-segmented images. In this technique, the kernel principle component analysis (KPCA) is used to capture the shape variations and to build the nonlinear shape model. The pre-segmentation is carried out by classifying the image pixels according to the high level texture features extracted using the over-complete wavelet packet decomposition. Additionally, the model fitting is completed using the particle swarm optimization technique (PSO) to adapt the model parameters. The proposed technique is fully automated, is talented to deal with complex shape variations, can efficiently optimize the model to fit the new cases, and is robust to noise and occlusion. In this paper, we demonstrate the proposed technique by implementing it to the liver segmentation from computed tomography (CT) scans and the obtained results are very hopeful.
ER -