The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. ex. Some numerals are expressed as "XNUMX".
Copyrights notice
The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. Copyrights notice
Ciri imej tempatan yang mantap telah menjadi komponen penting bagi banyak algoritma penglihatan komputer terkini. Disebabkan sumber perkakasan yang terhad, pengiraan ciri tempatan pada sistem terbenam bukanlah tugas yang mudah. Dalam kertas kerja ini, kami mencadangkan rangka kerja pengkomputeran selari yang cekap untuk ciri teguh dipercepatkan dengan orientasi ke arah sistem terbenam berasaskan multi-DSP. Kami mengoptimumkan modul dalam SURF untuk menggunakan keupayaan cip DSP dengan lebih baik. Kami juga mereka bentuk susun atur data padat untuk menyesuaikan diri dengan sumber memori yang terhad dan untuk meningkatkan lebar jalur akses data. Skim halangan dan beban kerja yang dipacu data dibentangkan untuk menyegerakkan cip kerja selari dan mengurangkan kos keseluruhan. Percubaan menunjukkan pelaksanaan kami mencapai kecekapan masa yang kompetitif berbanding dengan kerja berkaitan.
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Salinan
Chao LIAO, Guijin WANG, Quan MIAO, Zhiguo WANG, Chenbo SHI, Xinggang LIN, "DSP-Based Parallel Implementation of Speeded-Up Robust Features" in IEICE TRANSACTIONS on Information,
vol. E94-D, no. 4, pp. 930-933, April 2011, doi: 10.1587/transinf.E94.D.930.
Abstract: Robust local image features have become crucial components of many state-of-the-art computer vision algorithms. Due to limited hardware resources, computing local features on embedded system is not an easy task. In this paper, we propose an efficient parallel computing framework for speeded-up robust features with an orientation towards multi-DSP based embedded system. We optimize modules in SURF to better utilize the capability of DSP chips. We also design a compact data layout to adapt to the limited memory resource and to increase data access bandwidth. A data-driven barrier and workload balance schemes are presented to synchronize parallel working chips and reduce overall cost. The experiment shows our implementation achieves competitive time efficiency compared with related works.
URL: https://global.ieice.org/en_transactions/information/10.1587/transinf.E94.D.930/_p
Salinan
@ARTICLE{e94-d_4_930,
author={Chao LIAO, Guijin WANG, Quan MIAO, Zhiguo WANG, Chenbo SHI, Xinggang LIN, },
journal={IEICE TRANSACTIONS on Information},
title={DSP-Based Parallel Implementation of Speeded-Up Robust Features},
year={2011},
volume={E94-D},
number={4},
pages={930-933},
abstract={Robust local image features have become crucial components of many state-of-the-art computer vision algorithms. Due to limited hardware resources, computing local features on embedded system is not an easy task. In this paper, we propose an efficient parallel computing framework for speeded-up robust features with an orientation towards multi-DSP based embedded system. We optimize modules in SURF to better utilize the capability of DSP chips. We also design a compact data layout to adapt to the limited memory resource and to increase data access bandwidth. A data-driven barrier and workload balance schemes are presented to synchronize parallel working chips and reduce overall cost. The experiment shows our implementation achieves competitive time efficiency compared with related works.},
keywords={},
doi={10.1587/transinf.E94.D.930},
ISSN={1745-1361},
month={April},}
Salinan
TY - JOUR
TI - DSP-Based Parallel Implementation of Speeded-Up Robust Features
T2 - IEICE TRANSACTIONS on Information
SP - 930
EP - 933
AU - Chao LIAO
AU - Guijin WANG
AU - Quan MIAO
AU - Zhiguo WANG
AU - Chenbo SHI
AU - Xinggang LIN
PY - 2011
DO - 10.1587/transinf.E94.D.930
JO - IEICE TRANSACTIONS on Information
SN - 1745-1361
VL - E94-D
IS - 4
JA - IEICE TRANSACTIONS on Information
Y1 - April 2011
AB - Robust local image features have become crucial components of many state-of-the-art computer vision algorithms. Due to limited hardware resources, computing local features on embedded system is not an easy task. In this paper, we propose an efficient parallel computing framework for speeded-up robust features with an orientation towards multi-DSP based embedded system. We optimize modules in SURF to better utilize the capability of DSP chips. We also design a compact data layout to adapt to the limited memory resource and to increase data access bandwidth. A data-driven barrier and workload balance schemes are presented to synchronize parallel working chips and reduce overall cost. The experiment shows our implementation achieves competitive time efficiency compared with related works.
ER -